tz28 / deep-learning
personal practice(个人练习,实现了深度学习中的一些算法,包括:四种初始化方法(zero initialize, random initialize, xavier initialize, he initialize),深度神经网络,正则化,dropout, 三种梯度下降方法(BGD, SGD, mini-batch),六种优化算法(momentum、nesterov momentum、Adagrad、Adadelta、RMSprop、Adam),梯度检验、batch normalization)、RNN
☆221Updated 6 years ago
Alternatives and similar repositories for deep-learning:
Users that are interested in deep-learning are comparing it to the libraries listed below
- 深度学习常用优化方法详解☆268Updated 7 years ago
- 论文分享☆42Updated 2 years ago
- 书籍:深度学习框架pytorch入门与实践☆156Updated 6 years ago
- ☆183Updated 5 years ago
- 各种深度学习结构、模型和技巧的集合☆119Updated 5 years ago
- Review, theoretical analysis and implementation of classic Machine Learning methods☆100Updated last year
- The source code and dataset about <Deep Learning - Best Practices on TensorFlow Engineering Implementation>☆218Updated 4 years ago
- ☆105Updated 4 years ago
- ☆121Updated 5 years ago
- The use examples of tensorboard on pytorch☆148Updated 6 years ago
- Github开源项目hyperopt系列的中文文档,以及学习教程等☆163Updated 5 years ago
- 🏫DeepLearning学习笔记以及Tensorflow、Pytorch的使用心得笔记。Dr. Sure会不定时往项目中添加他看到的最新的技术,欢迎批评指正。☆424Updated 4 years ago
- Deep learning algorithms source code for beginners with python3☆29Updated 6 years ago
- 《深度学习之PyTorch实战计算机视觉》全书代码☆132Updated 5 years ago
- Sample code and picture of my blog or project☆137Updated 2 years ago
- 天池比赛,kaggle等等(Keras/PyTorch实战)☆182Updated 4 years ago
- 用python和sklearn两种方法实现李航《统计学习方法》中的算法☆338Updated 6 years ago
- 《深度学习理论与实战:基础篇》代码☆132Updated 3 years ago
- 廖星宇《深度学习入门之PyTorch》代码实践☆143Updated 7 years ago
- ☆195Updated 4 years ago
- 机器学习&深度学习资料笔记&基本算法实现&资源整理(ML / CV / NLP / DM...)☆226Updated last year
- 一个面向初学者的,友好的Keras入门教程☆123Updated 5 years ago
- 用例子学习PyTorch1.0(Learning PyTorch with Examples 中文翻译与学习)☆73Updated 6 years ago
- ☆58Updated 5 years ago
- ☆172Updated 2 years ago
- ☆33Updated 5 years ago
- LeetCode collection☆43Updated 4 years ago
- Udacity Machine Learning Nano Degree Courses☆201Updated 7 years ago
- The code on deep learning.☆74Updated 6 years ago
- 仅使用numpy从头开始实现神经网络,包括反向传播公式推导过程; numpy构建全连接层、卷积层、池化层、Flatten层;以及图像分类案例及精调网络案例等,持续更新中... ...☆541Updated 4 years ago