LiangjunFeng / Machine-Learning
Basic algorithms about machine learnig
☆49Updated 4 years ago
Related projects ⓘ
Alternatives and complementary repositories for Machine-Learning
- ☆136Updated 7 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆51Updated 7 years ago
- Deep neural network aided canonical correlation analysis (DNN-CCA) in Tensorflow and Keras☆10Updated 3 years ago
- try out bearing fault diagnosis with semi-supervised vae☆37Updated 7 years ago
- 刀具剩余寿命预测☆70Updated 4 years ago
- 2017工业大数据创新竞赛/风机叶片结冰预测大赛☆48Updated 6 years ago
- MATLAB Code for abnormal detection using Support Vector Data Description (SVDD).☆78Updated 2 years ago
- 2018 phm data challenge, ion mill machine RUL & fault diagnosis☆67Updated 6 years ago
- This is a Python package for Broad Learning System.☆18Updated 4 years ago
- 轴承有3种故障:外圈故障,内圈故障,滚珠故障,外加正常的工作状态。如表1所示,结合轴承的3种直径(直径1,直径2,直径3),轴承的工作状态有10类☆31Updated 5 years ago
- 基于无监督和迁移学习的旋转机械故障诊断☆33Updated 4 years ago
- [深度应用]·DC竞赛轴承故障检测开源Baseline(基于Keras1D卷积 val_acc:0.99780)☆178Updated 5 years ago
- AutoEncoder implements by keras. Including AE, DAE, DAE_CNN, VAE, VAE_CNN, CVAE, Sparse AE, Stacked DAE.☆38Updated 4 years ago
- ☆33Updated 4 years ago
- pytorch >>> 快速搭建自己的模型!☆122Updated 2 years ago
- LSTM和SVM实现设备故障诊断☆48Updated 5 years ago
- Weighted LSSVM for regression☆38Updated 5 years ago
- 1D CNN for CWRU rolling bearings dataset☆37Updated 6 years ago
- The code of Understanding and Learning Discriminant Features based on Multi-Attention 1DCNN for Wheelset Bearing Fault Diagnosis.☆24Updated 5 years ago
- BLS Code☆119Updated 5 years ago
- ☆93Updated 3 years ago
- 轴承故障检测 训练赛第30名代码☆123Updated 5 years ago
- graduation design DBN + SVM☆35Updated 5 years ago
- Autoencoders in PyTorch☆97Updated 5 years ago
- 卷积神经网络提取特征并用于SVM//www.cnblogs.com/chuxiuhong/p/6132814.html☆15Updated 6 years ago
- 支持向量机,Support Vector Machine(SVM),多类分类☆28Updated 7 years ago
- 包含一些比较常见的数据挖掘竞赛或者项目的源码☆118Updated 5 years ago
- Online Semi-supervised Learning + Online Heterogeneous Transfer Learning☆28Updated 9 years ago
- start tests☆24Updated 6 years ago
- with LSTM method to solve bearing fault diagnosis classification☆62Updated 7 years ago