moonfolk / Multilevel-Wasserstein-Means
☆21Updated last year
Related projects ⓘ
Alternatives and complementary repositories for Multilevel-Wasserstein-Means
- Python code for implementing embeddings in the Wasserstein space of elliptical distributions☆10Updated 4 years ago
- Wasserstein regularization for sparse multi-task regression☆15Updated 4 years ago
- Exercises for the Tutorial on Approximate Bayesian Inference at the Data Science Summer School 2018☆22Updated 6 years ago
- ☆22Updated 9 years ago
- Morgan A. Schmitz., Matthieu Heitz, Nicolas Bonneel, Fred Ngole, David Coeurjolly, Marco Cuturi, Gabriel Peyré, and Jean-Luc Starck. "Was…☆18Updated 5 years ago
- Tensorflow Implementation of "Large-scale Optimal Transport and Mapping Estimation"(ICLR2018/NIPS 2017 OTML)☆19Updated 6 years ago
- Code for our ICLR19 paper "Wasserstein Barycenters for Model Ensembling", Pierre Dognin, Igor Melnyk, Youssef Mroueh, Jarret Ross, Cicero…☆20Updated 5 years ago
- NeurIPS 2016. Linear-time interpretable nonparametric two-sample test.☆63Updated 6 years ago
- Legendre decomposition for tensors☆13Updated 6 years ago
- Stochastic Optimization for Optimal Transport☆22Updated 8 years ago
- Gabriel Peyré, Marco Cuturi, Justin Solomon, Gromov-Wasserstein Averaging of Kernel and Distance Matrices, Proc. of ICML 2016.☆73Updated 8 years ago
- Python implementation of smooth optimal transport.☆56Updated 3 years ago
- Learning Generative Models across Incomparable Spaces (ICML 2019)☆26Updated 4 years ago
- MMD, Hausdorff and Sinkhorn divergences scaled up to 1,000,000 samples.☆54Updated 5 years ago
- Stochastic algorithms for computing Regularized Optimal Transport☆55Updated 6 years ago
- Implementation of the Multiscale Laplacian Graph Kernel☆18Updated 5 years ago
- A Python implementation of Monge optimal transportation☆49Updated last year
- The Matlab Code for the ICML 2015 paper "Scalable Deep Poisson Factor Analysis for Topic Modeling"☆19Updated 9 years ago
- Python implementation of the infomration bottleneck method (tishby et al, 1999)☆36Updated 7 years ago
- Scaled MMD GAN☆36Updated 5 years ago
- ☆12Updated 6 years ago
- Code for the paper 'Understanding Measures of Uncertainty for Adversarial Example Detection'☆57Updated 6 years ago
- Uncertainty interpretations of the neural network☆31Updated 6 years ago
- Reducing Reparameterization Gradient Variance code.☆33Updated 7 years ago
- Code for "Modeling Sparse Deviations for Compressed Sensing using Generative Models", ICML 2018☆23Updated 6 years ago
- NeurIPS 2017 best paper. An interpretable linear-time kernel goodness-of-fit test.☆67Updated 5 years ago
- Keras implementation of Deep Wasserstein Embeddings☆46Updated 6 years ago
- Dirichlet Process Mixture using PVI, SMC, Variational☆15Updated 10 years ago
- Source code for Naesseth et. al. "Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms" (2017)☆39Updated 7 years ago
- Binary Classifier Calibration Models☆15Updated 7 years ago