moonfolk / Multilevel-Wasserstein-Means
☆22Updated last year
Alternatives and similar repositories for Multilevel-Wasserstein-Means:
Users that are interested in Multilevel-Wasserstein-Means are comparing it to the libraries listed below
- Code for our ICLR19 paper "Wasserstein Barycenters for Model Ensembling", Pierre Dognin, Igor Melnyk, Youssef Mroueh, Jarret Ross, Cicero…☆22Updated 5 years ago
- A Python implementation of Monge optimal transportation☆49Updated last year
- ☆12Updated 6 years ago
- MMD, Hausdorff and Sinkhorn divergences scaled up to 1,000,000 samples.☆54Updated 5 years ago
- Exercises for the Tutorial on Approximate Bayesian Inference at the Data Science Summer School 2018☆22Updated 6 years ago
- Scaled MMD GAN☆36Updated 5 years ago
- Tensorflow Implementation of "Large-scale Optimal Transport and Mapping Estimation"(ICLR2018/NIPS 2017 OTML)☆19Updated 6 years ago
- Binary Classifier Calibration Models☆15Updated 7 years ago
- Wasserstein regularization for sparse multi-task regression☆15Updated 4 years ago
- Learning Generative Models across Incomparable Spaces (ICML 2019)☆27Updated 4 years ago
- NeurIPS 2016. Linear-time interpretable nonparametric two-sample test.☆63Updated 6 years ago
- ☆22Updated 9 years ago
- ☆32Updated 6 years ago
- Stochastic Optimization for Optimal Transport☆22Updated 8 years ago
- Morgan A. Schmitz., Matthieu Heitz, Nicolas Bonneel, Fred Ngole, David Coeurjolly, Marco Cuturi, Gabriel Peyré, and Jean-Luc Starck. "Was…☆18Updated 5 years ago
- Material for the practical of the DS3 course on "Representing and comparing probabilities with kernels"☆26Updated 5 years ago
- Source code for the ICML2019 paper "Subspace Robust Wasserstein Distances"☆28Updated 5 years ago
- Code for "Modeling Sparse Deviations for Compressed Sensing using Generative Models", ICML 2018☆24Updated 6 years ago
- Courses and practical sessions for the Optimal Transport and Machine learning course at Statlearn 2018☆26Updated 6 years ago
- A Python implementation of Kernel Mean Matching data reweighting algorithm☆33Updated 9 years ago
- Gabriel Peyré, Marco Cuturi, Justin Solomon, Gromov-Wasserstein Averaging of Kernel and Distance Matrices, Proc. of ICML 2016.☆73Updated 8 years ago
- Stochastic algorithms for computing Regularized Optimal Transport☆57Updated 6 years ago
- Keras implementation of Deep Wasserstein Embeddings☆47Updated 6 years ago
- Implementation of the Multiscale Laplacian Graph Kernel☆18Updated 5 years ago
- Random feature latent variable models in Python☆22Updated last year
- The Matlab Code for the ICML 2015 paper "Scalable Deep Poisson Factor Analysis for Topic Modeling"☆19Updated 9 years ago
- Code for Sliced Gromov-Wasserstein☆66Updated 5 years ago
- mixed membership stochastic block model☆13Updated 8 years ago
- Sinkhorn Barycenters via Frank-Wolfe algorithm☆24Updated 4 years ago
- ☆28Updated 3 years ago