moonfolk / Multilevel-Wasserstein-Means
☆22Updated 2 years ago
Alternatives and similar repositories for Multilevel-Wasserstein-Means:
Users that are interested in Multilevel-Wasserstein-Means are comparing it to the libraries listed below
- Tensorflow Implementation of "Large-scale Optimal Transport and Mapping Estimation"(ICLR2018/NIPS 2017 OTML)☆19Updated 6 years ago
- Wasserstein regularization for sparse multi-task regression☆15Updated 4 years ago
- A Python implementation of Monge optimal transportation☆49Updated last year
- MMD, Hausdorff and Sinkhorn divergences scaled up to 1,000,000 samples.☆55Updated 6 years ago
- Python code for implementing embeddings in the Wasserstein space of elliptical distributions☆11Updated 4 years ago
- NeurIPS 2016. Linear-time interpretable nonparametric two-sample test.☆63Updated 6 years ago
- Exercises for the Tutorial on Approximate Bayesian Inference at the Data Science Summer School 2018☆22Updated 6 years ago
- Code for "Modeling Sparse Deviations for Compressed Sensing using Generative Models", ICML 2018☆24Updated 6 years ago
- Binary Classifier Calibration Models☆15Updated 8 years ago
- The Matlab Code for the ICML 2015 paper "Scalable Deep Poisson Factor Analysis for Topic Modeling"☆19Updated 9 years ago
- Supporting code for "Parallel Streaming Wasserstein Barycenters"☆10Updated 7 years ago
- Source code for Naesseth et. al. "Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms" (2017)☆39Updated 8 years ago
- NeurIPS 2017 best paper. An interpretable linear-time kernel goodness-of-fit test.☆67Updated 5 years ago
- Stochastic Optimization for Optimal Transport☆22Updated 8 years ago
- Python implementation of smooth optimal transport.☆57Updated 3 years ago
- simple MATLAB code for randomized matrix computation☆23Updated 9 years ago
- Code for Invariant Rep. Without Adversaries (NIPS 2018)☆35Updated 5 years ago
- Black Box Variational Inference☆14Updated 9 years ago
- Learning Generative Models across Incomparable Spaces (ICML 2019)☆27Updated 5 years ago
- Gabriel Peyré, Marco Cuturi, Justin Solomon, Gromov-Wasserstein Averaging of Kernel and Distance Matrices, Proc. of ICML 2016.☆73Updated 8 years ago
- Non-Parametric Calibration for Classification (AISTATS 2020)☆19Updated 3 years ago
- code for hierarchical importance weighted autoencoders☆11Updated 5 years ago
- Morgan A. Schmitz., Matthieu Heitz, Nicolas Bonneel, Fred Ngole, David Coeurjolly, Marco Cuturi, Gabriel Peyré, and Jean-Luc Starck. "Was…☆18Updated 5 years ago
- Scaled MMD GAN☆36Updated 5 years ago
- Code for "Differentiable Compositional Kernel Learning for Gaussian Processes" https://arxiv.org/abs/1806.04326☆71Updated 6 years ago
- Code for the paper Implicit Weight Uncertainty in Neural Networks☆65Updated 5 years ago
- Source code for the ICML2019 paper "Subspace Robust Wasserstein Distances"☆28Updated 5 years ago
- Black Box Variational Inference for Bayesian logistic regression☆18Updated 8 years ago
- Matlab Code for Variational Gaussian Copula Inference☆16Updated 9 years ago
- ☆11Updated 7 years ago