icemiliang / pyvot
A Python implementation of Monge optimal transportation
☆49Updated last year
Alternatives and similar repositories for pyvot:
Users that are interested in pyvot are comparing it to the libraries listed below
- Python implementation of smooth optimal transport.☆57Updated 3 years ago
- Code for Sliced Gromov-Wasserstein☆66Updated 5 years ago
- MMD, Hausdorff and Sinkhorn divergences scaled up to 1,000,000 samples.☆54Updated 5 years ago
- Stochastic algorithms for computing Regularized Optimal Transport☆57Updated 6 years ago
- [ICML 2020] Differentiating through the Fréchet Mean (https://arxiv.org/abs/2003.00335).☆54Updated 3 years ago
- L. Chizat, G. Peyré, B. Schmitzer, F-X. Vialard. Scaling Algorithms for Unbalanced Transport Problems. Preprint Arxiv:1607.05816, 2016.☆42Updated 8 years ago
- Gabriel Peyré, Marco Cuturi, Justin Solomon, Gromov-Wasserstein Averaging of Kernel and Distance Matrices, Proc. of ICML 2016.☆73Updated 8 years ago
- Code for NIPS 2017 spotlight paper: "Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration" by Jason Alt…☆31Updated 7 years ago
- Code for http://proceedings.mlr.press/v80/dvurechensky18a.html☆16Updated 6 years ago
- Source code for the ICML2019 paper "Subspace Robust Wasserstein Distances"☆28Updated 5 years ago
- ☆24Updated 3 years ago
- Learning Generative Models across Incomparable Spaces (ICML 2019)☆27Updated 4 years ago
- Contains the code relative to the paper Partial Gromov-Wasserstein with Applications on Positive-Unlabeled Learning https://arxiv.org/abs…☆21Updated 4 years ago
- ☆17Updated last year
- Learning the optimal transport map via input convex neural neworks☆40Updated 4 years ago
- The implementation code for our paper Wasserstein Embedding for Graph Learning (ICLR 2021).☆31Updated 4 years ago
- ☆45Updated last year
- Implementation of the Gromov-Wasserstein distance to the setting of Unbalanced Optimal Transport☆43Updated last year
- Keras implementation of Deep Wasserstein Embeddings☆47Updated 6 years ago
- GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021☆49Updated 2 years ago
- Sinkhorn Barycenters via Frank-Wolfe algorithm☆24Updated 5 years ago
- Learning generative models with Sinkhorn Loss☆28Updated 6 years ago
- Learning Autoencoders with Relational Regularization☆45Updated 4 years ago
- A collection of adaptive sparse multi-scale solvers for optimal transport and related optimization problems.☆53Updated 3 years ago
- Morgan A. Schmitz., Matthieu Heitz, Nicolas Bonneel, Fred Ngole, David Coeurjolly, Marco Cuturi, Gabriel Peyré, and Jean-Luc Starck. "Was…☆18Updated 5 years ago
- J-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, G. Peyré. Iterative Bregman Projections for Regularized Transportation Problems. SIAM Jour…☆32Updated 8 years ago
- ☆53Updated 6 months ago
- ☆31Updated 4 years ago
- Gromov-Wasserstein Learning for Graph Matching and Node Embedding☆72Updated 5 years ago
- ☆13Updated 5 years ago