icemiliang / pyvotLinks
A Python implementation of Monge optimal transportation
☆49Updated last year
Alternatives and similar repositories for pyvot
Users that are interested in pyvot are comparing it to the libraries listed below
Sorting:
- Code for Sliced Gromov-Wasserstein☆69Updated 5 years ago
- Python implementation of smooth optimal transport.☆60Updated 4 years ago
- MMD, Hausdorff and Sinkhorn divergences scaled up to 1,000,000 samples.☆56Updated 6 years ago
- Stochastic algorithms for computing Regularized Optimal Transport☆58Updated 7 years ago
- Learning the optimal transport map via input convex neural neworks☆41Updated 5 years ago
- L. Chizat, G. Peyré, B. Schmitzer, F-X. Vialard. Scaling Algorithms for Unbalanced Transport Problems. Preprint Arxiv:1607.05816, 2016.☆42Updated 8 years ago
- [ICML 2020] Differentiating through the Fréchet Mean (https://arxiv.org/abs/2003.00335).☆58Updated 3 years ago
- Source code for the ICML2019 paper "Subspace Robust Wasserstein Distances"☆29Updated 6 years ago
- Implementation of the Gromov-Wasserstein distance to the setting of Unbalanced Optimal Transport☆45Updated 2 years ago
- [NeurIPS 2020] Neural Manifold Ordinary Differential Equations (https://arxiv.org/abs/2006.10254)☆120Updated 2 years ago
- Gabriel Peyré, Marco Cuturi, Justin Solomon, Gromov-Wasserstein Averaging of Kernel and Distance Matrices, Proc. of ICML 2016.☆74Updated 9 years ago
- Code for "Variational Autoencoder with Learned Latent Structure"☆34Updated 4 years ago
- ☆29Updated 3 years ago
- Learning Generative Models across Incomparable Spaces (ICML 2019)☆27Updated 5 years ago
- ☆54Updated last year
- Sliced Wasserstein Distance for Learning Gaussian Mixture Models☆66Updated 2 years ago
- Closed form Entropic OT for balanced and unbalanced Gaussians☆17Updated 3 years ago
- Implementation of the Sliced Wasserstein Autoencoders☆90Updated 7 years ago
- Keras implementation of Deep Wasserstein Embeddings☆48Updated 7 years ago
- Deep convolutional gaussian processes.☆80Updated 6 years ago
- Sinkhorn Barycenters via Frank-Wolfe algorithm☆28Updated 5 years ago
- Learning generative models with Sinkhorn Loss☆30Updated 6 years ago
- ICML 2020 Paper: Latent Variable Modelling with Hyperbolic Normalizing Flows☆54Updated 2 years ago
- PyTorch implementation of "Wasserstein-2 Generative Networks" (ICLR 2021)☆56Updated 2 years ago
- Implementation of the Sliced Wasserstein Autoencoder using PyTorch☆103Updated 6 years ago
- Spatio-temporal alignements: Optimal transport in space and time☆47Updated 4 months ago
- Code for http://proceedings.mlr.press/v80/dvurechensky18a.html☆17Updated 7 years ago
- Gaussian Process Prior Variational Autoencoder☆85Updated 6 years ago
- Sliced Wasserstein Generator☆23Updated 6 years ago
- Pytorch version of "Deep Convolutional Networks as shallow Gaussian Processes" by Adrià Garriga-Alonso, Carl Rasmussen and Laurence Aitch…☆32Updated 5 years ago