matthieuheitz / WassersteinDictionaryLearningLinks
Morgan A. Schmitz., Matthieu Heitz, Nicolas Bonneel, Fred Ngole, David Coeurjolly, Marco Cuturi, Gabriel Peyré, and Jean-Luc Starck. "Wasserstein dictionary learning: Optimal transport-based unsupervised nonlinear dictionary learning." SIAM Journal on Imaging Sciences, 2018
☆20Updated 5 years ago
Alternatives and similar repositories for WassersteinDictionaryLearning
Users that are interested in WassersteinDictionaryLearning are comparing it to the libraries listed below
Sorting:
- Spatio-temporal alignements: Optimal transport in space and time☆47Updated 4 months ago
- Source code for the ICML2019 paper "Subspace Robust Wasserstein Distances"☆29Updated 6 years ago
- MMD, Hausdorff and Sinkhorn divergences scaled up to 1,000,000 samples.☆56Updated 6 years ago
- Python implementation of smooth optimal transport.☆60Updated 4 years ago
- A matlab toolbox to perform Wasserstein Dictionary Learning or NMF☆32Updated 9 years ago
- Gabriel Peyré, Marco Cuturi, Justin Solomon, Gromov-Wasserstein Averaging of Kernel and Distance Matrices, Proc. of ICML 2016.☆74Updated 9 years ago
- Code for density estimation with nonparametric cluster shapes.☆39Updated 9 years ago
- Source code for the "Computationally Tractable Riemannian Manifolds for Graph Embeddings" paper☆36Updated 5 years ago
- Keras implementation of Deep Wasserstein Embeddings☆48Updated 7 years ago
- ☆29Updated 3 years ago
- Graph matching and clustering by comparing heat kernels via optimal transport.☆27Updated 2 years ago
- Wasserstein regularization for sparse multi-task regression☆15Updated 5 years ago
- Dirichlet Process K-means☆48Updated last year
- Pytorch version of "Deep Convolutional Networks as shallow Gaussian Processes" by Adrià Garriga-Alonso, Carl Rasmussen and Laurence Aitch…☆32Updated 5 years ago
- [NeurIPS 2020] Neural Manifold Ordinary Differential Equations (https://arxiv.org/abs/2006.10254)☆120Updated 2 years ago
- Courses and practical sessions for the Optimal Transport and Machine learning course at Statlearn 2018☆26Updated 7 years ago
- A Python implementation of Monge optimal transportation☆49Updated last year
- Ultrahyperbolic Representation Learning☆13Updated 5 years ago
- ☆30Updated 4 years ago
- Code for "Differentiable Compositional Kernel Learning for Gaussian Processes" https://arxiv.org/abs/1806.04326☆71Updated 7 years ago
- Code for "Fast Unbalanced Optimal Transport on a Tree" (NeurIPS 2020)☆13Updated 4 years ago
- ☆38Updated 5 years ago
- GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices☆18Updated 3 years ago
- Reference implementation of variational sequential Monte Carlo proposed by Naesseth et al. "Variational Sequential Monte Carlo" (2018)☆65Updated 6 years ago
- tensorflow implementation of the Wasserstein (aka optimal transport) distance☆72Updated 4 years ago
- FALKON implementation used in the experimental section of "FALKON: An Optimal Large Scale Kernel Method"☆30Updated 4 years ago
- Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation☆67Updated 3 years ago
- ICML 2020 Paper: Latent Variable Modelling with Hyperbolic Normalizing Flows☆54Updated 2 years ago
- Code for Sliced Gromov-Wasserstein☆69Updated 5 years ago
- Code for ICML 2019 paper on "Fast and Simple Natural-Gradient Variational Inference with Mixture of Exponential-family Approximations"☆18Updated 4 years ago