matthieuheitz / WassersteinDictionaryLearningLinks
Morgan A. Schmitz., Matthieu Heitz, Nicolas Bonneel, Fred Ngole, David Coeurjolly, Marco Cuturi, Gabriel Peyré, and Jean-Luc Starck. "Wasserstein dictionary learning: Optimal transport-based unsupervised nonlinear dictionary learning." SIAM Journal on Imaging Sciences, 2018
☆20Updated 6 years ago
Alternatives and similar repositories for WassersteinDictionaryLearning
Users that are interested in WassersteinDictionaryLearning are comparing it to the libraries listed below
Sorting:
- A matlab toolbox to perform Wasserstein Dictionary Learning or NMF☆32Updated 9 years ago
- Source code for the ICML2019 paper "Subspace Robust Wasserstein Distances"☆29Updated 6 years ago
- Keras implementation of Deep Wasserstein Embeddings☆48Updated 7 years ago
- MMD, Hausdorff and Sinkhorn divergences scaled up to 1,000,000 samples.☆58Updated 6 years ago
- Gabriel Peyré, Marco Cuturi, Justin Solomon, Gromov-Wasserstein Averaging of Kernel and Distance Matrices, Proc. of ICML 2016.☆75Updated 9 years ago
- Python implementation of smooth optimal transport.☆61Updated 4 years ago
- Graph matching and clustering by comparing heat kernels via optimal transport.☆27Updated 3 years ago
- Source code for the "Computationally Tractable Riemannian Manifolds for Graph Embeddings" paper☆37Updated 5 years ago
- Wasserstein regularization for sparse multi-task regression☆15Updated 5 years ago
- Spatio-temporal alignements: Optimal transport in space and time☆49Updated 9 months ago
- Dirichlet Process K-means☆49Updated last year
- Code for density estimation with nonparametric cluster shapes.☆39Updated 9 years ago
- ☆29Updated 4 years ago
- A Python implementation of Monge optimal transportation☆49Updated 2 years ago
- ☆37Updated 5 years ago
- ☆30Updated 5 years ago
- Supporting code for "Parallel Streaming Wasserstein Barycenters"☆10Updated 8 years ago
- Sliced Wasserstein Distance for Learning Gaussian Mixture Models☆66Updated 2 years ago
- a deep recurrent model for exchangeable data☆34Updated 5 years ago
- L. Chizat, G. Peyré, B. Schmitzer, F-X. Vialard. Scaling Algorithms for Unbalanced Transport Problems. Preprint Arxiv:1607.05816, 2016.☆43Updated 9 years ago
- Code for "Differentiable Compositional Kernel Learning for Gaussian Processes" https://arxiv.org/abs/1806.04326☆71Updated 7 years ago
- Optimal transport and generalizations☆67Updated 6 years ago
- A clean TensorFlow implementation of Concrete Dropout☆22Updated 8 years ago
- Sample pytorch implementation of Covariant Compositional Networks☆13Updated 7 years ago
- Stochastic algorithms for computing Regularized Optimal Transport☆58Updated 7 years ago
- Sliced Wasserstein Generator☆22Updated 7 years ago
- Ultrahyperbolic Representation Learning☆13Updated 5 years ago
- Legendre decomposition for tensors☆13Updated 7 years ago
- tensorflow implementation of the Wasserstein (aka optimal transport) distance☆74Updated 4 years ago
- Learning generative models with Sinkhorn Loss☆30Updated 7 years ago