leonorand / capsule_network
capsule胶囊网络
☆10Updated 5 years ago
Alternatives and similar repositories for capsule_network:
Users that are interested in capsule_network are comparing it to the libraries listed below
- A pytorch implementation of Capsule Network.☆92Updated 6 months ago
- Capsule, LSTM/GRU, CNN for text class implemented by Pytorch 胶囊网络, 循环神经网络和卷积神经网络在中文文本分类中的应用☆43Updated 6 years ago
- 使用pytorch搭建textCNN实现中文文本分类☆127Updated 5 years ago
- ☆166Updated 5 years ago
- 文本分类, 双向lstm + attention 算法☆89Updated 4 years ago
- 一个基本的多层lstm rnn模型,能实现中英文文本的二分类或多分类☆46Updated 6 years ago
- tweet sentiment extraction of kaggle competition☆11Updated 4 years ago
- 基于深度学习框架pytorch实现的中文文本分类,目前包括textcnn,textrnn,textrcnn,textrnn+attention,transformer☆44Updated 2 years ago
- ☆30Updated 4 years ago
- Lstm+Cnn 预训练词向量 文本分类☆100Updated 6 years ago
- ☆16Updated last year
- 疫情期间网民情绪识别比赛分享+top1~3解决方案☆51Updated 4 years ago
- 基于tf.keras的多标签多分类模型☆85Updated 3 years ago
- 基于LSTM网络与自注意力机制对中文评论进行细粒度情感分析☆55Updated 3 years ago
- 基于Transformers的文本分类☆337Updated 3 years ago
- Pytorch Bert+BiLstm二分类☆38Updated 3 years ago
- BiLSTM 加普通Attention中文文本多分类Pytorch实现☆32Updated 3 years ago
- Knowledge distillation in text classification with pytorch. 知识蒸馏,中文文本分类,教师模型BERT、XLNET,学生模型biLSTM。☆217Updated 2 years ago
- ☆264Updated 2 years ago
- pytorch实现的LSTM简易文本分类(附代码详解)☆37Updated 4 years ago
- 电商评论情感分类☆15Updated 4 years ago
- 文本分类的目前测试效果较好的算法☆56Updated 5 years ago
- Use tensorflow to achieve some NLP project, eg: classification chatbot ner attention QAetc.☆34Updated 4 years ago
- ☆75Updated 6 years ago
- Toyhom的学习之路,Toyhom's way of learning☆28Updated 5 years ago
- 本项目的数据来自“互联网新闻情感分析”赛题。基于Transformer2.0库中的中文Bert模型,对新闻语料进行三分类。☆106Updated 5 years ago
- 本项目主要为针对DPCNN(Deep Pyramid Convolutional Neural Networks for Text Categorization )文本分类(Text Classification)的论文复现以及基于知乎看山杯Inception的修改和复现,…☆142Updated 5 years ago
- Dataountain疫情期间网民情绪识别比赛☆27Updated 4 years ago
- Use Bert-CNN-Capsule for text classification☆10Updated 5 years ago
- 文本分类:传统机器学习模型和深度学习模型☆50Updated 6 years ago