iseesaw / CoreEntityEmotionClassifyLinks
2019搜狐校园算法大赛,主实体情感分类任务
☆11Updated 6 years ago
Alternatives and similar repositories for CoreEntityEmotionClassify
Users that are interested in CoreEntityEmotionClassify are comparing it to the libraries listed below
Sorting:
- bert for chinese text classification☆141Updated 6 years ago
- pytorch用Textcnn-bilstm-crf模型实现命名实体识别☆42Updated 7 years ago
- use ELMo in chinese environment☆105Updated 6 years ago
- NLP Predtrained Embeddings, Models and Datasets Collections(NLP_PEMDC). The collection will keep updating.☆65Updated 5 years ago
- 汽车主题情感分析大赛冠军☆27Updated 6 years ago
- Adversarial Transfer Learning for Chinese Named Entity Recognition with Self-Attention Mechanism☆202Updated 6 years ago
- 关于文本分类的许多方法,主要涉及到TextCNN,TextRNN, LEAM, Transformer,Attention, fasttext, HAN等☆76Updated 6 years ago
- 2019年百度的实体链接比赛,“科学空间队”源码☆110Updated 6 years ago
- CCKS 2018 开放领域的中文问答任务 1st 解决方案☆111Updated 6 years ago
- 关系抽取个人实战总结以及开源工具包使用☆56Updated 6 years ago
- ☆135Updated 6 years ago
- 基于BERT的中文序列标注☆141Updated 6 years ago
- 利用预训练的中文模型实现基于bert的语义匹配模型 数据集为LCQMC官方数据☆199Updated 5 years ago
- TensorFlow code and pre-trained models for BERT☆58Updated 4 years ago
- 2019年百度的三元组抽取比赛,一个baseline☆208Updated 6 years ago
- transformer crf 命名实体识别☆107Updated 6 years ago
- the demo for bert☆142Updated 6 years ago
- 搜狐校园算法大赛baseline☆66Updated 6 years ago
- NLP research:基于tensorflow的nlp深度学习项目,支持文本分类/句子匹配/序列标注/文本生成 四大任务☆194Updated last year
- 2019搜狐校园算法大赛。决赛解决方案ppt、实体lgb单模代码☆71Updated 6 years ago
- ☆61Updated 6 years ago
- Use BERT as feature. TensorFlow code and pre-trained models for BERT☆54Updated 6 years ago
- 使用BERT做文本相似度☆63Updated 5 years ago
- 中文预训练模型生成字向量学习,测试BERT,ELMO的中文效果☆100Updated 5 years ago
- DIAC2019基于Adversarial Attack的问题等价性判别比赛☆82Updated 5 years ago
- 在bert模型的pre_training基础上进行text_cnn文本分类☆79Updated 5 years ago
- Byte Cup 2018国际机器学习竞赛 23 名(水滴队)代码☆47Updated 6 years ago
- 面向金融领域的事件主体抽取(ccks2019),一个baseline☆119Updated 6 years ago
- 2019年百度的实体链指比赛(ccks2019),一个baseline☆112Updated 6 years ago
- AI Challenger 2018 细粒度用户评论情感分析,排名17th,基于Aspect Level 思路的解决方案☆329Updated 6 years ago