iwtbs / recommend-algorithm
介绍作者在学习推荐系统过程中学习到的知识,包括爬虫、大数据、NLP、召回、排序等模块。包括知识总结和代码实践两部分。
☆12Updated 4 years ago
Alternatives and similar repositories for recommend-algorithm
Users that are interested in recommend-algorithm are comparing it to the libraries listed below
Sorting:
- 简单的实现推荐系统的召回模型和排序模型,其中召回模型使用协同过滤算法,排序模型使用gbdt+lr算法☆59Updated 6 years ago
- 小白记录学习CTR的历程☆17Updated 4 years ago
- rater, recommender systems. 推荐模型,包括:DeepFM,Wide&Deep,DIN,DeepWalk,Node2Vec等模型实现,开箱即用。☆45Updated 4 years ago
- 推荐算法学习☆39Updated 2 years ago
- 机器学习、深度学习基础知识. 推荐系统及nlp相关算法实现☆67Updated 2 years ago
- 短视频内容理解与推荐竞赛☆83Updated 5 years ago
- 个性化推荐代码--初学者☆40Updated 5 years ago
- 基于科大讯飞AI营销算法比赛实现CTR深度学习方法☆47Updated 6 years ago
- 推荐系统相关模型 包括召回和排序☆30Updated 5 years ago
- Kaggle 项目实战(教程) = 文档 + 代码 + 视频(欢迎参与)☆10Updated 5 years ago
- 京东JDATA2019-用户对品类下店铺的购买预测☆18Updated 5 years ago
- 第三届 Apache Flink 极客挑战赛暨AAIG CUP——电商推荐“抱大腿”攻击识别亚军代码方案☆29Updated 3 years ago
- 基于用户画像的商品推荐挑战赛Rank5☆23Updated 3 years ago
- 2020腾讯广告算法大赛初赛rank6,复赛rank11队伍(wujie代码)☆12Updated 4 years ago
- 讯飞移动广告反欺诈算法竞赛☆34Updated 5 years ago
- 招商银行2021FinTech精英训练营☆15Updated 4 years ago
- 2018科大讯飞AI营销算法大赛模型方案☆22Updated 6 years ago
- 2017“达观杯”个性化推荐算法挑战赛-rank6☆43Updated 5 years ago
- 京东杯 2019 第六届泰达创新创业挑战赛-用户对品类下店铺购买预测_季军方案☆18Updated 5 years ago
- This repository provides a comprehensive implementation of a deep neural network-based recommendation system similar to YouTube's. The re…☆57Updated 7 months ago
- ☆104Updated 2 years ago
- RecommenderSystems: from 0 to practice. 包括推荐系统实践和深度推荐系统两部分☆17Updated 3 years ago
- LR, FM, DeepFM, xDeepFM, DIN, CF等推荐算法代码demo。采用TFRecords作为输入,方便实际场景应用。☆104Updated 4 years ago
- 短视频 youtube召回模型推荐,特征包括标题 tags id,tfserving docker部署☆23Updated 4 years ago
- 2018年甜橙金融杯大数据建模大赛-初赛第四-复赛线上11-决赛9-复现top1解决方案-【二分类,风控】☆76Updated 4 years ago
- ☆11Updated 6 years ago
- ☆18Updated 4 years ago
- ☆15Updated 3 years ago
- 用户对品类下店铺的购买预测☆26Updated 5 years ago
- 将deepwalk、node2vector和阿里的文章:Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba 用代码实现☆55Updated 5 years ago