sjyttkl / personal_recommendationLinks
个性化推荐代码--初学者
☆39Updated 5 years ago
Alternatives and similar repositories for personal_recommendation
Users that are interested in personal_recommendation are comparing it to the libraries listed below
Sorting:
- 推荐系统从入门到实战☆166Updated 3 years ago
- 2018科大讯飞营销算法大赛(冠军方案)☆95Updated 6 years ago
- 简单的实现推荐系统的召回模型和排序模型,其中召回模型使用协同过滤算法,排序模型使用gbdt+lr算法☆58Updated 6 years ago
- 推荐系统相关模型 包括召回和排序☆30Updated 5 years ago
- 一些经典的个性化推荐算法的实现,从理论推导到实战☆68Updated 5 years ago
- 黑马头条推荐系统☆100Updated 5 years ago
- CCF2018 数据挖掘 机器学习 智能匹配 特征工程☆49Updated 5 years ago
- 《推荐系统开发实战》代码及勘误☆60Updated 5 years ago
- LR, FM, DeepFM, xDeepFM, DIN, CF等推荐算法代码demo。采用TFRecords作为输入,方便实际场景应用。☆104Updated 5 years ago
- 推荐系统实践(基于近邻和LFM的推荐系统)☆103Updated 7 years ago
- 图灵联邦视频点击预测大赛线上第三-【ctr, embedding, 穿越特征】☆62Updated 5 years ago
- 2018年甜橙金融杯大数据建模大赛-初赛第四-复赛线上11-决赛9-复现top1解决方案-【二分类,风控】☆75Updated 5 years ago
- 推荐算法学习☆39Updated 2 years ago
- 推荐系统实战☆34Updated 5 years ago
- 广告点击率(CTR)预测经典模型 GBDT + LR 理解与实践(附数据 + 代码)☆91Updated 5 years ago
- 华为_DigiX_算法精英大赛——人口年龄属性预测_ Rank14 方案☆31Updated 6 years ago
- 2019中国高校计算机大赛——大数据挑战赛 第三名解决方案☆123Updated 5 years ago
- 1st place solution for the AntaiCup-International-E-commerce-Artificial-Intelligence-Challenge☆189Updated 5 years ago
- Spark SQL 实现 ItemCF,UserCF,Swing,推荐系统,推荐算法,协同过滤☆141Updated 5 years ago
- [推荐系统] Based on the scoring data set, the recommendation system is built with FM and LR as the core(基于评分数据集,构建以FM和LR为核心的推荐系统).☆302Updated 3 years ago
- 机器学习、深度学习基础知识. 推荐系统及nlp相关算法实现☆68Updated 3 years ago
- 阿里移动推荐算法比赛☆78Updated 8 years ago
- YouTube推荐算法☆111Updated 3 years ago
- ☆101Updated 6 years ago
- Python 3.6 下的推荐算法解析,尽量使用简单的语言剖析原理,相似度度量、协同过滤、矩阵分解等☆105Updated 7 years ago
- 几种常见的工业级召回算法+示例☆12Updated 5 years ago
- 视频点击预测大赛-TOP1方案☆88Updated 3 years ago
- 阿里移动推荐算法☆127Updated 6 years ago
- 1st Solution for 2019-CIKM-Analyticup: Efficient and Novel Item Retrieval for Large-scale Online Shopping Recommendation☆234Updated last year
- 2020腾讯广告算法大赛 Top5 solution. https://algo.qq.com/☆83Updated 4 years ago