Eleanoryuyuyu / RecommendRelativeLinks
推荐系统相关模型 包括召回和排序
☆30Updated 5 years ago
Alternatives and similar repositories for RecommendRelative
Users that are interested in RecommendRelative are comparing it to the libraries listed below
Sorting:
- LR, FM, DeepFM, xDeepFM, DIN, CF等推荐算法代码demo。采用TFRecords作为输入,方便实际场景应用。☆104Updated 5 years ago
- 简单的实现推荐系统的召回模型和排序模型,其中召回模型使用协同过滤算法,排序模型使用gbdt+lr算法☆58Updated 6 years ago
- 2018科大讯飞营销算法大赛(冠军方案)☆95Updated 6 years ago
- 视频点击预测大赛-TOP1方案☆88Updated 3 years ago
- 2017“达观杯”个性化推荐算法挑战赛-rank6☆43Updated 6 years ago
- IJCAI18-阿里妈妈广告转化率预测代码(Rank29)☆96Updated 7 years ago
- 推荐系统实战☆34Updated 5 years ago
- gbdt+lr☆158Updated 6 years ago
- ☆207Updated 5 months ago
- ☆172Updated 5 years ago
- KDD Cup 2020 Challenges for Modern E-Commerce Platform: Debiasing Full榜15 Half榜13☆67Updated 4 years ago
- Tensorflow2.x implementations of CTR(LR、FM、FFM)☆72Updated 4 years ago
- LR, Wide&Deep, DCN, NFM, DeepFM, NFFM☆116Updated 6 years ago
- 华为_DigiX_算法精英大赛——人口年龄属性预测_ Rank14 方案☆31Updated 6 years ago
- ☆66Updated 6 years ago
- 基于wide deep模型的CTR预估,从训练到部署☆17Updated 6 years ago
- 2019年知乎看山杯专家发现算法大赛第六名完整解决方案☆39Updated 5 years ago
- 1st Solution for 2019-CIKM-Analyticup: Efficient and Novel Item Retrieval for Large-scale Online Shopping Recommendation☆234Updated last year
- IJCAI-17 top1 solution☆65Updated 7 years ago
- 1st place solution for the AntaiCup-International-E-commerce-Artificial-Intelligence-Challenge☆188Updated 5 years ago
- 推荐系统从入门到实战☆166Updated 3 years ago
- 看山杯 专家发现算法大赛 baseline 0.701741036192302(没有五折验证)☆37Updated 5 years ago
- ☆101Updated 6 years ago
- 基于科大讯飞AI营销算法比赛实现CTR深度学习方法☆46Updated 6 years ago
- 2018年甜橙金融杯大数据建模大赛-初赛第四-复赛线上11-决赛9-复现top1解决方案-【二分类,风控】☆76Updated 5 years ago
- 快手活跃用户预测——lctry队解决方案☆51Updated 7 years ago
- rater, recommender systems. 推荐模型,包括:DeepFM,Wide&Deep,DIN,DeepWalk,Node2Vec等模型实现,开箱即用。☆45Updated 5 years ago
- use xgboost and lr model for text classification. xgboost is used to be a feature transform for LR☆44Updated 7 years ago
- 招商银行信用卡中 心校园大赛:消费金融场景下的用户购买预测 Rank 3rd☆72Updated 7 years ago
- Experiment results using FM, FFM and DeepFM algorithms in Criteo Display Advertising Challenge(https://www.kaggle.com/c/criteo-display-ad…☆13Updated 5 years ago