Fisher87 / ai_exploreLinks
机器学习、深度学习基础知识. 推荐系统及nlp相关算法实现
☆68Updated 3 years ago
Alternatives and similar repositories for ai_explore
Users that are interested in ai_explore are comparing it to the libraries listed below
Sorting:
- 简单的实现推荐系统的召回模型和排序模型,其中召回模型使用协同过滤算法,排序模型使用gbdt+lr算法☆58Updated 7 years ago
- 推荐算法学习☆39Updated 2 years ago
- 广告点击率(CTR)预测经典模型 GBDT + LR 理解与实践(附数据 + 代码)☆93Updated 5 years ago
- LR, FM, DeepFM, xDeepFM, DIN, CF等推荐算法代码demo。采用TFRecords作为输入,方便实际场景应用。☆105Updated 5 years ago
- 推荐系统从入门到实战☆166Updated 3 years ago
- Common Model about DeepCTR(WideDeep,DeepFM, DCN, XdeepFM)☆32Updated last year
- ☆213Updated 10 months ago
- rater, recommender systems. 推荐模型,包括:DeepFM,Wide&Deep,DIN,DeepWalk,Node2Vec等模型实现,开箱即用。☆45Updated 5 years ago
- 推荐系统读书笔记、思维导图等☆40Updated 2 years ago
- LR, Wide&Deep, DCN, NFM, DeepFM, NFFM☆116Updated 6 years ago
- 推荐系统相关模型 包括召回和排序☆30Updated 5 years ago
- gbdt+lr☆160Updated 6 years ago
- 1st Solution for 2019-CIKM-Analyticup: Efficient and Novel Item Retrieval for Large-scale Online Shopping Recommendation☆234Updated 3 months ago
- 推荐系统实践(基于近邻和LFM的推荐系统)☆102Updated 7 years ago
- ☆106Updated 3 years ago
- DeepFM for CTR prediction problem (pytorch 1.0)☆73Updated 6 years ago
- Spark SQL 实现 ItemCF,UserCF,Swing,推荐系统,推荐算法,协同过滤☆141Updated 6 years ago
- 一些经典的个性化推荐算法的实现,从理论推导到实战☆68Updated 5 years ago
- 视频点击预测大赛-TOP1方案☆88Updated 3 years ago
- This repository provides a comprehensive implementation of a deep neural network-based recommendation system similar to YouTube's. The re…☆65Updated last month
- keras implementation about Deep Interest Network☆66Updated 6 years ago
- 推荐系统/计算广告相关仓库,个人博客https://jesse-csj.github.io/☆292Updated 4 years ago
- A simple start for collaborative filtering.☆20Updated 4 years ago
- 基于wide deep模型的CTR预估,从训练到部署☆17Updated 6 years ago
- 推荐系统实战☆34Updated 5 years ago
- 2017“达观杯”个性化推荐算法挑战赛-rank6☆43Updated 6 years ago
- ☆44Updated 6 years ago
- 看山杯 专家发现算法大赛 baseline 0.701741036192302( 没有五折验证)☆37Updated 6 years ago
- 一些CTR模型和常见特征工程的方法☆26Updated 4 years ago
- 2nd Place Solution for SMP CUP 2016☆93Updated 8 years ago