datawhalechina / team-learning
主要展示Datawhale的组队学习计划。
☆2,252Updated 2 years ago
Alternatives and similar repositories for team-learning:
Users that are interested in team-learning are comparing it to the libraries listed below
- 主要存储Datawhale组队学习中“数据挖掘/机器学习”方向的资料。☆1,697Updated 3 years ago
- 主要存储Datawhale组队学习中“编程、数据结构与算法”方向的资料。☆833Updated last year
- 动手学数据分析以项目为主线,知识点孕育其中,通过边学、边做、边引导来得到更好的学习效果☆1,252Updated 10 months ago
- 数据挖掘、计算机视觉、自然语言处理、推荐系统竞赛知识、代码、思路☆4,439Updated 6 months ago
- 统计学习方法习题解答,在线阅读地址:https://datawhalechina.github.io/statistical-learning-method-solutions-manual☆1,857Updated 8 months ago
- 机器学习算法的公式推导以及numpy实现☆2,079Updated last year
- Datawhale成员整理的面经,内容包括机器学习,CV,NLP,推荐,开发等,欢迎大家star☆2,885Updated 3 months ago
- Mathematical derivation and pure Python code implementation of machine learning algorithms.☆1,529Updated 7 months ago
- 机器学习初学者公众号作品☆2,235Updated 4 years ago
- 《统计学习方法》笔记-基于Python算法实现☆2,093Updated 7 years ago
- 《机器学习理论导引》(宝箱书)的证明、案例、概念补充与参考文献讲解。☆1,613Updated 3 weeks ago
- 周志华《机器学习》手推笔记☆3,667Updated 4 years ago
- pandas中文教程☆4,831Updated last year
- Matplotlib中文教程,在线阅读地址:https://datawhalechina.github.io/fantastic-matplotlib/☆484Updated 2 years ago
- My personal notes☆1,699Updated 2 years ago
- 《机器学习实战》的python3源码☆1,321Updated 4 years ago
- Data competition Top Solution 数据竞赛top解决方案开源整理☆3,366Updated 4 years ago
- Implementation of Statistical Learning Method, Second Edition.《统计学习方法》第二版,算法实现。☆840Updated 4 years ago
- Statistical learning methods, 统计学习方法(第2版)[李航] [笔记, 代码, notebook, 参考文献, Errata, lihang]☆6,114Updated last year
- ☆1,327Updated 5 years ago
- notes of machine learning algorithm derivation☆773Updated 5 years ago
- ☆5,158Updated 5 years ago
- [译] 面向机器学习的特征工程☆2,523Updated last year
- exercise for nndl☆3,256Updated 9 months ago
- 温州大学《机器学习》课程资料(代码、课件等)☆1,928Updated 3 months ago
- Implement Statistical Learning Methods, Li Hang the hard way. 李航《统计学习方法》一书的硬核 Python 实现☆1,173Updated 2 years ago
- 动手学CV-Pytorch版☆906Updated last year
- 《机器学习宝典》包含:谷歌机器学习速成课程(招式)+机器学习术语表(口诀)+机器学习规则(心得)+机器学习中的常识性问题 (内功)。该资源适用于机器学习、深度学习研究人员和爱好者参考!☆1,110Updated 4 years ago
- 台湾大学李宏毅老师机器学习☆1,056Updated 5 years ago
- ☆2,753Updated 5 years ago