jia-zhuang / xgboost-lightgbm-hyperparameter-tuningLinks
Bayesian Optimization and Grid Search for xgboost/lightgbm
☆77Updated 7 months ago
Alternatives and similar repositories for xgboost-lightgbm-hyperparameter-tuning
Users that are interested in xgboost-lightgbm-hyperparameter-tuning are comparing it to the libraries listed below
Sorting:
- 基于遗传算法的特征选择☆128Updated 5 years ago
- 机器学习集成模型之Stacking各类模型及工具源码☆118Updated 4 years ago
- TensorFlow Probability;Time series model☆127Updated 3 years ago
- Keras version of LSTNet☆96Updated 6 years ago
- My Data Competition Solutions☆103Updated last year
- Machine learning competition solutions and tricks | 算法竞赛方案☆59Updated 2 months ago
- 当样本分布发生变化时,交叉验证无法准确评估模型在测试集上的效果,这时候需要其他构造验证集的方法来应对。☆52Updated 5 years ago
- BaseWavenet/Wavenet+ResidualBlock☆16Updated 6 years ago
- Github开源项目hyperopt系列的中文文档,以及学习教程等☆163Updated 5 years ago
- 常用的特征选择方法☆68Updated 3 years ago
- 天池“资金流入流出预测——挑战baseline”的解决方案,线上效果143.5☆97Updated 5 years ago
- 基于Keras的LSTM多变量时间序 列预测☆181Updated 7 years ago
- 数据预处理之缺失值处理,特征选择☆22Updated 6 years ago
- 基于seq2seq模型的风功率预测☆29Updated 5 years ago
- 2020 第四届工业大数据创新竞赛-水电站入库流量预测-top1代码☆32Updated 4 years ago
- N-Beats library implementation☆89Updated 3 years ago
- ☆101Updated 7 years ago
- Comparing XGBoost, CatBoost and LightGBM on TimeSeries Regression (RMSE, R2, AIC) on two different TimeSeries datasets.☆23Updated 5 years ago
- 2019科大讯飞工程机械赛题-亚军☆39Updated 5 years ago
- Time Series Prediction, Stateful LSTM; 时间序列预测,洗发水销量/股票走势预测,有状态循环神经网络☆58Updated 8 years ago
- ☆26Updated 6 years ago
- Using K-NN, SVM, Bayes, LSTM, and multi-variable LSTM models on time series forecasting☆51Updated 6 years ago
- 利用时间序列预测汽车销量☆43Updated 6 years ago
- 时间序列理论和案例实践☆72Updated 7 years ago
- 包括决策树和随机森林进行离职人员预测,Xgboost和lightGBM的应用☆287Updated 5 years ago
- Tensorflow implementation of paper http://arxiv.org/abs/1809.02105☆66Updated 5 years ago
- 5th place solution for Kaggle competition Favorita Grocery Sales Forecasting☆259Updated 7 years ago
- Learning Record about TSP☆58Updated 6 years ago
- 基於DA-RNN之DSTP-RNN論文試做(Ver1.0)☆77Updated 5 years ago
- 本赛题要求选手基于历史光伏发电数据、天气数据、光伏设备空间相对位置等信息,通过建立适当的模型,对未来一段时间内的光伏发电出力进行预测。A榜使用外部数据得分0.88501103804 排名32,未使用外部数据得分0.88042407737 ;B榜得分0.90467829011…☆31Updated last year