nocoolsandwich / iamQA
中文wiki百科QA阅读理解问答系统,使用了CCKS2016数据的NER模型和CMRC2018的阅读理解模型,还有W2V词向量搜索,使用torchserve部署
☆91Updated 3 years ago
Alternatives and similar repositories for iamQA:
Users that are interested in iamQA are comparing it to the libraries listed below
- 基 于bert的kbqa系统☆151Updated 2 years ago
- 限定领域的三元组抽取的一次尝试,本文将会介绍笔者在2019语言与智能技术竞赛的三元组抽取比赛方面的一次尝试。☆132Updated 2 years ago
- CCKS 2020:新冠知识图谱构建与问答评测(四)新冠知识图谱问答评测☆217Updated 4 years ago
- 基于知识图谱的中文问答系统(EA-CKGQA)☆37Updated 5 years ago
- 从模型训练到部署,实战知识图谱(Knowledge Graph)&自然语言处理(NLP)。涉及 Tensorflow, Bert+Bi-LSTM+CRF,Neo4j等 涵盖 Named Entity Recognition,Text Classify,Informatio…☆90Updated 5 years ago
- albert + lstm + crf实体识别,pytorch实现。识别的主要实体是人名、地名、机构名和时间。albert + lstm + crf (named entity recognition)☆137Updated 2 years ago
- 本NER项目包含多个中文数据集,模型采用BiLSTM+CRF、BERT+Softmax、BERT+Cascade、BERT+WOL等,最后用TFServing进行模型部署,线上推理和线下推理。☆80Updated 3 years ago
- Named Recognition Entity based on BERT and CRF 基于BERT+CRF的中文命名实体识别☆183Updated 2 years ago
- baidu aistudio event extraction competition☆224Updated 2 years ago
- lic2020关系抽取比赛,使用Pytorch实现苏神的模型。☆101Updated 4 years ago
- CMeEE/CBLUE/NER实体识别☆128Updated 3 years ago
- NLP关系抽取:序列标注、层叠式指针网络、Multi-head Selection、Deep Biaffine Attention☆100Updated 3 years ago
- some baselines for lic2020 (http://lic2020.cipsc.org.cn/)☆218Updated 5 years ago
- Knowledge Graph☆172Updated 2 years ago
- 基于知识图谱的问答系统☆135Updated 5 years ago
- A trial of kbqa based on bert for NLPCC2016/2017 Task 5 (基于BERT的中文知识库问答实践,代码可跑通)☆269Updated 6 years ago
- ccks2020 NER competitions☆117Updated 4 years ago
- 将bert模型应用到问答系统中来,一者学习知识图谱的基本操作,二简单搭建问答系统的基本框架,三将词向量、bert模型实践应用☆59Updated 5 years ago
- “万创杯”中医药天池大数据竞赛——中医文献问题生成挑战 决赛 第一名方案☆135Updated 4 years ago
- Keras solution of simple Knowledge-Based QA task with Pretrained Language Model: supporting BERT/RoBERTa/ALBERT☆21Updated last year
- TPlinker for NER 中文/英文命名实体识别☆124Updated 3 years ago
- 2019百度的关系抽取比赛,使用Pytorch实现苏神的模型,F1在dev集可达到0.75,联合关系抽取,Joint Relation Extraction.☆313Updated 4 years ago
- 中文命名实体识别NER。用keras实现BILSTM+CRF、IDCNN+CRF、BERT+BILSTM+CRF进行实体识别。结果当然是BERT+BILSTM+CRF最好啦。☆288Updated 5 years ago
- A Chinese KBQA dataset with SPARQL annotations.☆142Updated 5 years ago
- COVID-2019 中文知识问答系统☆49Updated 4 years ago
- 全局指针统一处理嵌套与非嵌套NER☆253Updated 3 years ago
- 中文关系抽取☆136Updated 6 years ago
- 哈工大bert上fine turning ,中文人物关系抽取任务准确率0.97☆117Updated 5 years ago
- 基于transformers的三元组抽取☆36Updated 3 years ago
- WordMultiSenseDisambiguation, chinese multi-wordsense disambiguation based on online bake knowledge base and semantic embedding similarit…☆127Updated 6 years ago