wylqq312715289 / semi-supervised-1Links
使用keras框架Embedding+LSTM对短文本分类-半监督
☆16Updated 7 years ago
Alternatives and similar repositories for semi-supervised-1
Users that are interested in semi-supervised-1 are comparing it to the libraries listed below
Sorting:
- 关于文本分类的许多方法,主要涉及到TextCNN,TextRNN, LEAM, Transformer,Attention, fasttext, HAN等☆76Updated 6 years ago
- AI-Challenger Baseline 细粒度用户评论情感分析☆230Updated 6 years ago
- 汽车行业用户观点主题及情感识别☆31Updated 6 years ago
- Hierarchical BiLSTM CNN using Keras☆77Updated 7 years ago
- 使用分层注意力机制 HAN + 多任务学习 解决 AI Challenger 细粒度用户评论情感分析 。https://challenger.ai/competition/fsauor2018☆58Updated 6 years ago
- 使用word2vec进行中文词向量的 训练☆91Updated 7 years ago
- Multilabel classification based on TextCNN and Attention☆78Updated 5 years ago
- 该工程是利用python3.6进行“特征提取+分类器”来实现美团评论的文本二分类问题。在特征提取部分提取了6种特征,分类器选择了python里面的包xgboost和lightGBM分别实现提升树和GBDT(梯度提升决策树)。☆94Updated 6 years ago
- 在bert模型的pre_training基础上进行text_cnn文本分类☆78Updated 5 years ago
- 使用深度学习方法对IMDB电影评价做情感分析,使用的方法分别为:MLP、BiRNN、BiGRU+Attention Model☆226Updated 8 years ago
- ☆132Updated 7 years ago
- keras+tensorflow+python3下的中文分词, 大数据可训练,解决内存不够用问题☆40Updated 7 years ago
- 集成各种神经网络进行情感分类,包括CNN、LSTM、Transformer以及BERT等网络模型☆73Updated 6 years ago
- NLP research:基于tensorflow的nlp深度学习项目,支持文本分类/句子匹配/序列标注/文本生成 四大任务☆194Updated last year
- ☆135Updated 6 years ago
- Lstm+Cnn 预训练词向量 文本分类☆104Updated 6 years ago
- tensorflow TxetCnn TextRNN 使用Textcnn、Textrnn对文本进行分类☆58Updated 6 years ago
- 嵌入Word2vec词向量的RNN+ATTENTION中文文本分类☆152Updated 5 years ago
- ☆96Updated 5 years ago
- all kinds of text classificaiton models and more with deep learning☆99Updated 7 years ago
- bilstm _Attention_crf☆38Updated 6 years ago
- 使用gensim训练word2vec模型并对训练得到词向量聚类☆16Updated 7 years ago
- CNN, LSTM, NBOW, fasttext 中文文本分类☆122Updated 5 years ago
- 互联网新闻情感分析赛题baseline☆42Updated 5 years ago
- 细粒度用户评论情感分析☆123Updated 6 years ago
- AI Challenger 2018 细粒度用户评论情感分析,排名17th,基于Aspect Level 思路的解决方案☆329Updated 6 years ago
- 基于条件随机场的医疗电子病例的命名实体识别☆114Updated 7 years ago
- ☆75Updated 7 years ago
- CSDN博客的关键词提取算法,融合TF,IDF,词性,位置等多特征。该项目用于参加2017 SMP用户画 像测评,排名第四,在验证集中精度为59.9%,在最终集中精度为58.7%。启发式的方法,通用性强。☆30Updated 7 years ago
- CNN 实现文本分类☆183Updated 3 years ago