wilsonlsm006 / NLP_BERT_binary-classification
使用BERT模型用于二分类任务
☆38Updated 5 years ago
Alternatives and similar repositories for NLP_BERT_binary-classification:
Users that are interested in NLP_BERT_binary-classification are comparing it to the libraries listed below
- 使用BERT构建多标签标注模型☆41Updated 5 years ago
- multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification☆27Updated 3 years ago
- 达观算法比赛ner任务,从重新训练bert,到finetune预测。☆75Updated 2 years ago
- 文本二分类任务,是否文档是否属于政治上的出访类事件,利用BERT提取特征,模型采用简单的DNN。☆61Updated 5 years ago
- 基于意图识别和命名实体识别的多轮对话场景设计☆38Updated 5 years ago
- 中文文本的向量表示方法(Sentence-BERT, CoSENT)的PyTorch简单实现,可以用于文本相似度计算。☆9Updated 3 years ago
- ☆45Updated 4 years ago
- A simple implement for multi-label text classification with Bert. I will extend the code to a higher version for very long text over 512,…☆11Updated 3 years ago
- 使用ALBERT预训练模型,用于识别文本中的时间,同时验证模型的预测耗时是否有显著提升。☆56Updated 5 years ago
- Bert中文文本分类☆40Updated 5 years ago
- Bert分类,语义相似度,获取句向量。☆64Updated last month
- 基于rasa_框架实现指自然语言相关功能:实体识别、文本分类、代消解功能、关系抽取等☆17Updated last year
- datagrand 2019 information extraction competition rank9☆130Updated 5 years ago
- 简单高效的Bert中文文本分类模型开发和部署☆26Updated 5 years ago
- 2019 BDCI互联网金融新实体发现☆39Updated 5 years ago
- 文本分类的目前测试效果较好的算法☆56Updated 5 years ago
- 微调预训练语言模型,解决多标签分类任务(可加载BERT、Roberta、Bert-wwm以及albert等知名开源tf格式的模型)☆141Updated 4 years ago
- ☆22Updated 2 years ago
- Pytorch进行长文本分类。这里用到的网络有:FastText、TextCNN、TextRNN、TextRCNN、Transformer☆47Updated 4 years ago
- top1-solution☆33Updated 5 years ago
- textcnn多标签文本分类☆36Updated 6 years ago
- 对苏神的bert4keras的实现原理和矩阵运算进行详细的注释,方便学习;bert4keras链接:https://github.com/bojone/bert4keras☆41Updated 4 years ago
- pytorch bert 版的 multi_label_text_classification☆10Updated 5 years ago
- 中文ner模型使用tensorflow2.1构建☆17Updated 3 years ago
- 2021搜狐校园文本匹配算法大赛☆16Updated 3 years ago
- DataFountain第五届达观杯第4名方案☆50Updated 2 years ago
- CCF BDCI 金融信息负面及主体判定第三名方案☆56Updated 5 years ago
- ☆38Updated 5 years ago
- 微调预训练语言模型(BERT、Roberta、XLBert等),用于计算两个文本之间的相似度(通过句子对分类任务转换),适用于中文文本☆89Updated 4 years ago
- ☆59Updated 4 years ago