busesese / DSSMLinks
基于movieLen1M数据集的DSSM深度召回实验
☆24Updated 4 years ago
Alternatives and similar repositories for DSSM
Users that are interested in DSSM are comparing it to the libraries listed below
Sorting:
- ☆97Updated 3 years ago
- Solution to the Debiasing Track of KDD CUP 2020☆160Updated 2 years ago
- LR, FM, DeepFM, xDeepFM, DIN, CF等推荐算法代码demo。采用TFRecords作为输入,方便实际场景应用。☆104Updated 5 years ago
- ☆15Updated 5 years ago
- ☆208Updated 6 months ago
- ctr、cvr预估☆49Updated 4 years ago
- ☆106Updated 2 years ago
- ☆216Updated 5 years ago
- 广告点击率(CTR)预测经典模型 GBDT + LR 理解与实践(附数据 + 代码)☆91Updated 5 years ago
- DeepFM for CTR prediction problem (pytorch 1.0)☆73Updated 5 years ago
- A simple start for collaborative filtering.☆20Updated 4 years ago
- TensorFlow implementation of multi-task learning architectures, incl. MMoE & PLE, on wechat dataset☆205Updated 3 years ago
- LR, Wide&Deep, DCN, NFM, DeepFM, NFFM☆116Updated 6 years ago
- keras implementation about Deep Interest Network☆65Updated 6 years ago
- 6th Solution for 2020-KDDCUP: Multi-Channel Retrieve and Sorting for Debiasing Recommender System☆164Updated last year
- gbdt+lr☆158Updated 6 years ago
- 华为digix算法大赛2020机器学习赛道-ctr预估初赛/决赛rank1☆136Updated 4 years ago
- 1st Solution for 2019-CIKM-Analyticup: Efficient and Novel Item Retrieval for Large-scale Online Shopping Recommendation☆234Updated last year
- 推荐系统排序模型复现☆47Updated 4 years ago
- 华为_DigiX_算法精英大赛——人口年龄属性预测_ Rank14 方案☆31Updated 6 years ago
- Codes repository for RecSys and DeepLearnig, RecSys and ReinForcement learning and Traditioinal RecSys.☆92Updated 5 years ago
- 推荐系统实战☆34Updated 5 years ago
- 2020腾讯广告算法大赛 Top5 solution. https://algo.qq.com/☆83Updated 4 years ago
- Here are the models listed in CTR. Example: FM、DeepFM、xDeepFM etc.☆67Updated last year
- 一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM, xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)☆270Updated 4 months ago
- ☆172Updated 5 years ago
- 推荐系统竞赛TOP开源解决方案汇总。☆262Updated 3 years ago
- 推荐算法学习☆39Updated 2 years ago
- 简单的实现推荐系统的召回模型和排序模型,其中召回模型使用协同过滤算法,排序模型使用gbdt+lr算法☆58Updated 6 years ago
- 1st place solution for the AntaiCup-International-E-commerce-Artificial-Intelligence-Challenge☆189Updated 5 years ago