xiaogp / recsys_sparkLinks
Spark SQL 实现 ItemCF,UserCF,Swing,推荐系统,推荐算法,协同过滤
☆141Updated 6 years ago
Alternatives and similar repositories for recsys_spark
Users that are interested in recsys_spark are comparing it to the libraries listed below
Sorting:
- LR, FM, DeepFM, xDeepFM, DIN, CF等推荐算法代码demo。采用TFRecords作为输入,方便实际场景应用。☆105Updated 5 years ago
- 推荐系统/计算广告相关仓库,个人博客https://jesse-csj.github.io/☆293Updated 4 years ago
- ☆218Updated 5 years ago
- A practical movie recommend project based on Item2vec.☆281Updated 5 years ago
- This repository provides a comprehensive implementation of a deep neural network-based recommendation system similar to YouTube's. The re…☆64Updated 2 weeks ago
- 存放推荐算法相关代码、文档、资料☆258Updated 5 years ago
- implement fm demo with python☆51Updated 6 years ago
- Classical RecSys algorithms implemented by using TensorFlow Estimators☆184Updated 7 years ago
- gbdt+lr☆160Updated 6 years ago
- ☆212Updated 9 months ago
- CTR模型代码和学习笔记总结☆396Updated 4 years ago
- 推荐系统从入门到实战☆166Updated 3 years ago
- FM and FFM implement with tensorflow by Python☆63Updated 6 years ago
- LR, Wide&Deep, DCN, NFM, DeepFM, NFFM☆116Updated 6 years ago
- ☆173Updated 5 years ago
- ctr、cvr预估☆49Updated 4 years ago
- 基于深度学习的CTR预估,从FM推演各深度学习CTR预估模型(附代码)☆208Updated 7 years ago
- ☆410Updated 9 months ago
- esmm model by tensorflow keras☆72Updated 4 years ago
- Wide and Deep Learning for CTR Prediction in tensorflow☆292Updated 4 years ago
- YouTube推荐算法☆112Updated 4 years ago
- 2018、2019 腾讯广告算法大赛/2018IJCAI 阿里妈妈搜索广告转化预测竞赛/讯飞广告营销算法/OGeek☆174Updated 5 years ago
- 基础的深度学习实验研究结果汇总笔记☆508Updated 2 years ago
- tensorflow2.0 实现的 DeepFM,使用 Criteo 子数据集加以实践。☆31Updated 5 years ago
- A simple DeepFM.☆102Updated 7 years ago
- Sharing the CTR Prediction original paper and personal study notes☆146Updated 5 years ago
- A python library contain classic algorithms and deep models on recommender system☆46Updated 5 years ago
- 推荐系统之深度学习模型,框架采用tensorflow2☆58Updated 3 years ago
- Implement Wide & Deep algorithm by using NumPy☆155Updated 6 years ago
- keras implementation about Deep Interest Network☆66Updated 6 years ago