msjbear / jdata-sparkLinks
JData算法大赛
☆31Updated 8 years ago
Alternatives and similar repositories for jdata-spark
Users that are interested in jdata-spark are comparing it to the libraries listed below
Sorting:
- Hybrid model of Gradient Boosting Trees and Logistic Regression (GBDT+LR) on Spark☆88Updated 7 years ago
- A parallel implementation of factorization machines based on Spark☆75Updated 5 years ago
- implement fm demo with python☆51Updated 6 years ago
- This is a kaggle challenge project called Display Advertising Challenge by CriteoLabs at 2014.这是2014年由CriteoLabs在kaggle上发起的广告点击率预估挑战项目。☆361Updated 6 years ago
- 跟踪计算广告涉及的召回排序模型、特征工程相关的经典论文☆82Updated 5 years ago
- recommendation system with Youtube Deep Net☆84Updated 7 years ago
- Classical RecSys algorithms implemented by using TensorFlow Estimators☆184Updated 7 years ago
- An implementation of GBDT+FM☆24Updated 8 years ago
- A simple DeepFM.☆102Updated 7 years ago
- use xgboost and lr model for text classification. xgboost is used to be a feature transform for LR☆44Updated 8 years ago
- some usefult utils like change tools and city lon and lat☆59Updated 7 years ago
- 2018第二届易观算法大赛☆85Updated 6 years ago
- Spark SQL 实现 ItemCF,UserCF,Swing,推荐系统,推荐算法,协同过滤☆141Updated 6 years ago
- LR, FM, DeepFM, xDeepFM, DIN, CF等推荐算法代码demo。采用TFRecords作为输入,方便实际场景应用。☆105Updated 5 years ago
- 基于深度学习的CTR预估,从FM推演各深度学习CTR预估模型(附代码)☆207Updated 7 years ago
- 算法相关的各种论文和slides☆41Updated 7 years ago
- 1st Place Season one & 6th Place Season two☆153Updated 8 years ago
- A practical movie recommend project based on Item2vec.☆281Updated 5 years ago
- An implement of Factorization Machines (LibFM)☆250Updated 7 years ago
- gbdt+lr☆161Updated 6 years ago
- ☆24Updated 9 years ago
- Neural candidates generation network based on Youtube reommender paper☆21Updated 6 years ago
- 将SVD应用于推荐系统中的评分预测问题☆188Updated 11 years ago
- ☆91Updated 8 years ago
- a python code of applying GBDT+LR for CTR prediction☆337Updated 7 years ago
- FFM (Field-Awared Factorization Machine) on Spark☆106Updated 7 years ago
- 主要解决ctr预估工程中的特征选择,特征编号(特征离散),单特征auc和logloss这3个问题.☆20Updated 8 years ago
- Wide and Deep Learning for CTR Prediction in tensorflow☆292Updated 4 years ago
- Machine Learning Trick : GBDT_Feature Blending Stacking CascadeForest☆372Updated 8 years ago
- 将deepwalk、node2vector和阿里的文章:Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba 用代码实现☆55Updated 6 years ago