hrwleo / recall_two_towers
双塔模型的优化实践 - tf2.x
☆35Updated 2 years ago
Alternatives and similar repositories for recall_two_towers:
Users that are interested in recall_two_towers are comparing it to the libraries listed below
- 天池阿里灵杰问天引擎电商搜索算法赛非官方 baseline,又名 NLP 从入门到 22/2771。☆90Updated 2 years ago
- ☆197Updated 5 years ago
- ☆93Updated 3 years ago
- 基于movieLen1M数据集的DSSM深度召回实验☆22Updated 4 years ago
- Pytorch Implementation of DSSM (Deep Structured Semantic Models)☆56Updated 5 years ago
- rater, recommender systems. 推荐模型,包括:DeepFM,Wide&Deep,DIN,DeepWalk,Node2Vec等模型实现,开箱即用。☆44Updated 4 years ago
- 推荐算法学习☆39Updated last year
- tensorflow2.0 实现的 DeepFM,使用 Criteo 子数据集加以实践。☆29Updated 4 years ago
- ☆64Updated last year
- “阿里灵杰”问天引擎电商搜索算法赛 第二名。电商领域两阶段文本匹配算法。☆52Updated 2 years ago
- esmm model by tensorflow keras☆68Updated 3 years ago
- ☆16Updated 4 years ago
- LR, FM, DeepFM, xDeepFM, DIN, CF等推荐算法代码demo。采用TFRecords作为输入,方便实际场景应用。☆103Updated 4 years ago
- This project is about recommendation system including rank&match models and metrics which are all implemented by `tensorflow 2.x`.☆24Updated last week
- keras implementation about Deep Interest Network☆65Updated 5 years ago
- 机器学习、深度学习基础知识. 推荐系统及nlp相关算法实现☆67Updated 2 years ago
- Spark SQL 实现 ItemCF,UserCF,Swing,推荐系统,推荐算法,协同过滤☆137Updated 5 years ago
- ctr、cvr预估☆49Updated 3 years ago
- TensorFlow implementation of multi-task learning architectures, incl. MMoE & PLE, on wechat dataset☆187Updated 3 years ago
- Google多任务模型MMoE☆80Updated 4 years ago
- 推荐系统排序模型复现☆44Updated 4 years ago
- Solution to the Debiasing Track of KDD CUP 2020☆158Updated last year
- LR, Wide&Deep, DCN, NFM, DeepFM, NFFM☆116Updated 5 years ago
- Implementation of DSSM for recommendation by PyTorch (Including SENet and random negative sampling)☆71Updated 2 years ago
- DeepFM for CTR prediction problem (pytorch 1.0)☆72Updated 5 years ago
- ☆172Updated 4 years ago
- A baseline for WenTianSearch☆85Updated 2 years ago
- 2020腾讯广告算法大赛 Top5 solution. https://algo.qq.com/☆82Updated 4 years ago
- 推荐系统相关模型 包括召回和排序☆29Updated 5 years ago
- A simple start for collaborative filtering.☆19Updated 4 years ago