hrwleo / recall_two_towersLinks
双塔模型的优化实践 - tf2.x
☆38Updated 2 years ago
Alternatives and similar repositories for recall_two_towers
Users that are interested in recall_two_towers are comparing it to the libraries listed below
Sorting:
- 天池阿里灵杰问天引擎电商搜索算法赛非官方 baseline,又名 NLP 从入门到 22/2771。☆91Updated 3 years ago
- ☆96Updated 4 years ago
- ☆210Updated 7 months ago
- ☆74Updated 2 years ago
- rater, recommender systems. 推荐模型,包括:DeepFM,Wide&Deep,DIN,DeepWalk,Node2Vec等模型实现,开箱即用。☆45Updated 5 years ago
- “阿里灵杰”问天引擎电商搜索算法赛 第二名。电商领域两阶段文本匹配算法。☆55Updated 3 years ago
- 微信大数据2021 1st,qq浏览器2021 3rd,mind新闻推荐2020 1st,NAIC2020 AI+遥感影像 2nd☆158Updated 3 years ago
- 2020腾讯广告算法大赛 Top5 solution. https://algo.qq.com/☆83Updated 4 years ago
- 推荐算法学习☆39Updated 2 years ago
- 微信大数据赛初赛10th,复赛14th☆31Updated 4 years ago
- TensorFlow implementation of multi-task learning architectures, incl. MMoE & PLE, on wechat dataset☆209Updated 4 years ago
- Spark SQL 实现 ItemCF,UserCF,Swing,推荐系统,推荐算法,协同过滤☆141Updated 5 years ago
- 推荐系统竞赛TOP开源解决方案汇总。☆264Updated 3 years ago
- 微信大数据挑战赛2021☆14Updated 4 years ago
- LR, FM, DeepFM, xDeepFM, DIN, CF等推荐算法代码demo。采用TFRecords作为输入,方便实际场景应用。☆105Updated 5 years ago
- Implementation of DSSM for recommendation by PyTorch (Including SENet and random negative sampling)☆89Updated 3 years ago
- A baseline for WenTianSearch☆86Updated 3 years ago
- CTR模型代码和学习笔记总结☆395Updated 4 years ago
- 视频点击预测大赛-TOP1方案☆88Updated 3 years ago
- 推荐系统实战☆34Updated 5 years ago
- 推荐系统相关模型 包括召回和排序☆30Updated 5 years ago
- ☆218Updated 5 years ago
- 推荐系统/计算广告相关仓库,个人博客https://jesse-csj.github.io/☆292Updated 4 years ago
- 「PyTorch」A deep matching model library for recommendations & advertising. It's easy to train models and to export representation vectors …☆90Updated 3 years ago
- 基于movieLen1M数据集的DSSM深度召回实验☆24Updated 4 years ago
- tensorflow2.0 实现的 DeepFM,使用 Criteo 子数据集加以实践。☆31Updated 5 years ago
- 1st Solution for 2019-CIKM-Analyticup: Efficient and Novel Item Retrieval for Large-scale Online Shopping Recommendation☆234Updated 3 weeks ago
- 利用lightgbm做(learning to rank)排序学习,包括数据处理、模型训练、模型决策可视化、模型可解释性以及预测等。Use LightGBM to learn ranking, including data processing, model trainin…☆273Updated 3 years ago
- Solution to the Debiasing Track of KDD CUP 2020☆160Updated 2 years ago
- 6th Solution for 2020-KDDCUP: Multi-Channel Retrieve and Sorting for Debiasing Recommender System☆164Updated last year