zxxwin / tf2_GraphSAGELinks
GraphSAGE 的 tensorflow2.0 实现
☆15Updated 5 years ago
Alternatives and similar repositories for tf2_GraphSAGE
Users that are interested in tf2_GraphSAGE are comparing it to the libraries listed below
Sorting:
- Yet Another GraphSage Implementation in TensorFlow2☆20Updated 5 years ago
- 自己学习推荐系统过程中用到的代码☆50Updated 6 years ago
- ☆410Updated 10 months ago
- ☆218Updated 5 years ago
- DeepFM for CTR prediction problem (pytorch 1.0)☆73Updated 6 years ago
- 1st Solution for 2019-CIKM-Analyticup: Efficient and Novel Item Retrieval for Large-scale Online Shopping Recommendation☆234Updated 3 months ago
- ☆173Updated 5 years ago
- 推荐系统/计算广告相关仓库,个人博客https://jesse-csj.github.io/☆291Updated 4 years ago
- 6th Solution for 2020-KDDCUP: Multi-Channel Retrieve and Sorting for Debiasing Recommender System☆163Updated last year
- 推荐系统实战☆34Updated 5 years ago
- This repository provides a comprehensive implementation of a deep neural network-based recommendation system similar to YouTube's. The re…☆66Updated last month
- Solution to the Debiasing Track of KDD CUP 2020☆160Updated 2 years ago
- 将deepwalk、node2vector和阿里的文章:Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba 用代码实现☆55Updated 6 years ago
- ☆18Updated 5 years ago
- 2019 HUAWEI DIGIX Nurbs Solutions☆131Updated 6 years ago
- LR, Wide&Deep, DCN, NFM, DeepFM, NFFM☆116Updated 6 years ago
- 华为digix算法大赛2020机器学习赛道-ctr预估初赛/决赛rank1☆136Updated 5 years ago
- A python library contain classic algorithms and deep models on recommender system☆46Updated 5 years ago
- 2018-CCF大数据与计算智能大赛-面向电信行业存量用户的智能套餐个性化匹配模型-复赛第二名解决方案☆10Updated 7 years ago
- ☆218Updated 10 months ago
- 2020腾讯广告算法大赛 Top5 solution. https://algo.qq.com/☆84Updated 5 years ago
- Deep Match to Rank Model for Personalized Click-Through Rate Prediction☆237Updated 5 years ago
- Code based in TensorFlow☆51Updated 6 years ago
- ctr、cvr预估☆49Updated 4 years ago
- Common Model about DeepCTR(WideDeep,DeepFM, DCN, XdeepFM)☆32Updated last year
- 深度学习500问,以问答形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自己及有需要的读者。 全书分为18个章节,近30万字。由于水平有限,书中不妥之处恳请广大读者批评指正。 未完待续............ 如有意合作,联系sc…☆108Updated 7 years ago
- 存放推荐算法相关代码、文档、资料☆259Updated 5 years ago
- Deep Recommenders☆330Updated 2 years ago
- HUAWEI-DIGIX 算法精英大赛人口属性预测赛题☆10Updated 6 years ago
- a tensorflow implement of MIND (Multi-interest network) recall model☆38Updated 5 years ago