yongzhuo / bert
bert分类, classify, classifier. TensorFlow code and pre-trained models for BERT
☆26Updated 5 years ago
Alternatives and similar repositories for bert:
Users that are interested in bert are comparing it to the libraries listed below
- 在bert模型的pre_training基础上进行text_cnn文本分类☆78Updated 4 years ago
- 关于文本分类的许多方法,主要涉及到TextCNN,TextRNN, LEAM, Transformer,Attention, fasttext, HAN等☆74Updated 6 years ago
- TensorFlow code and pre-trained models for BERT☆58Updated 3 years ago
- Bert中文文本分类☆40Updated 5 years ago
- 双向lstm+crf 序列标注☆63Updated 5 years ago
- 关系抽取个人实战总结以及开源工具包使用☆56Updated 6 years ago
- 基于TensorFlow,seq2seq+attention+beamsearch的文本摘要。☆57Updated 5 years ago
- bert for chinese text classification☆142Updated 6 years ago
- 文本分类的目前测试效果较好的算法☆56Updated 5 years ago
- 基于Bi-GRU + CRF 的中文机构名、人名识别, 支持google bert模型☆167Updated 5 years ago
- 一个关于百度2019语言与智能技术竞赛信息抽取 (http://lic2019.ccf.org.cn/kg) 模型, 模型采用BERT+CNN。DEMO地址 https://github.com/Wangpeiyi9979/InformationExtractionDem…☆187Updated 5 years ago
- bilstm _Attention_crf☆37Updated 5 years ago
- 2019百度语言与智能技术竞赛信息抽取赛代5名代码☆69Updated 5 years ago
- BERT-BiLSTM-CRF的Keras版实现☆40Updated 5 years ago
- NLP Predtrained Embeddings, Models and Datasets Collections(NLP_PEMDC). The collection will keep updating.☆64Updated 5 years ago
- 在 Google BERT Fine-tuning基础上,利用cnn/rnn进行中文文本的分类☆19Updated 5 years ago
- 多标签文本分类☆53Updated 5 years ago
- biLSTM_CRF 命名实体识别☆53Updated 6 years ago
- 实现了一下multi-head-selection联合关系实体抽取☆30Updated 5 years ago
- 嵌入Word2vec词向量的RNN+ATTENTION中文文本分类☆151Updated 4 years ago
- albert + lstm + crf实体识别,pytorch实现。识别的主要实体是人名、地名、机构名和时间。albert + lstm + crf (named entity recognition)☆136Updated 2 years ago
- biLSTM_CRF 中文分词☆35Updated 6 years ago
- 利用ALBERT实现文本二分类,判别是否属于政治上的出访类事件,提升模型训练和预测速度。☆72Updated 2 years ago
- use ELMo in chinese environment☆104Updated 6 years ago
- Relation Extraction 中文关系提取☆72Updated 6 years ago
- Learning nlp and reproduce some papers☆38Updated 4 years ago
- 中文预训练模型生成字向量学习,测试BERT,ELMO的中文效果☆97Updated 5 years ago
- transformer crf 命名实体识别☆105Updated 6 years ago
- ☆38Updated 5 years ago
- textcnn多标签文本分类☆36Updated 6 years ago