pengshuang / AI-CompLinks
AI-Challenger Baseline 细粒度用户评论情感分析
☆230Updated 6 years ago
Alternatives and similar repositories for AI-Comp
Users that are interested in AI-Comp are comparing it to the libraries listed below
Sorting:
- AI Challenger 2018 细粒度用户评论情感分析,排名17th,基于Aspect Level 思路的解决方案☆329Updated 6 years ago
- 细粒度用户评论情感分析☆123Updated 6 years ago
- AI Challenger 2018 Sentiment Analysis Baseline with fastText☆152Updated 6 years ago
- CCF-BDCI 2018年汽车行业用户观点主题及情感识别挑战赛 第6名解决方案☆143Updated 6 years ago
- BDCI 2018 汽车行业用户观点主题及情感识别 决赛一等奖方案☆431Updated 6 years ago
- 关于文本分类的许多方法,主要涉及到TextCNN,TextRNN, LEAM, Transformer,Attention, fasttext, HAN等☆76Updated 6 years ago
- 神策杯2018高校算法大师赛(中文关键词提取)第二名代码方案☆309Updated 5 years ago
- ☆135Updated 6 years ago
- NLP research:基于tensorflow的nlp深度学习项目,支持文本分类/句子匹配/序列标注/文本生成 四大任务☆194Updated last year
- 中文ULMFiT 情感分析 文本分类☆262Updated 6 years ago
- 2018年"达观杯"文本智能处理挑战赛-长文本分类-rank4☆283Updated 5 years ago
- 评论上的情感分析:主题与情感词抽取☆81Updated 5 years ago
- 2018年蚂蚁金服金融大脑赛题分享☆151Updated 6 years ago
- 汽车行业用户观点主题及情感识别☆31Updated 6 years ago
- 基于siamese-lstm的中文句子相似度计算☆130Updated 7 years ago
- 基于条件随机场的医疗电子病例的命名实体识别☆114Updated 7 years ago
- pytorch learning eamples☆25Updated 7 years ago
- 2018达观杯长文本分类智能处理挑战赛 18解决方案☆154Updated 6 years ago
- CNN, LSTM, NBOW, fasttext 中文文本分类☆122Updated 5 years ago
- BDCI2017-让AI当法官,决赛第四(4/415)https://www.datafountain.cn/competitions/277/details☆121Updated 7 years ago
- CCL2018客服领域用户意图分 类冠军1st方案☆150Updated 2 years ago
- 使用深度学习方法对IMDB电影评价做情感分析,使用的方法分别为:MLP、BiRNN、BiGRU+Attention Model☆226Updated 8 years ago
- bert for chinese text classification☆142Updated 6 years ago
- 搜狐校园算法大赛baseline☆66Updated 6 years ago
- 第三届魔镜杯 智能客服问题相似性算法设计 第12名解决方案☆149Updated 6 years ago
- Code for Fine-grained Sentiment Analysis of User Reviews of AI Challenger 2018☆171Updated 5 years ago
- 2019搜狐校园算法大赛。决赛解决方案ppt、实体lgb单模代码☆71Updated 6 years ago
- ☆61Updated 6 years ago
- ai challenger 2018细粒度情感分类第一名解决方案, A training framework itegrating tensorflow and pytorch☆583Updated 2 years ago
- A Chinese word segment model based on BERT, F1-Score 97%☆94Updated 6 years ago