techshoww / mnn-yolov5
Imported from https://gitee.com/techshoww/mnn-yolov5.
☆26Updated 3 years ago
Alternatives and similar repositories for mnn-yolov5:
Users that are interested in mnn-yolov5 are comparing it to the libraries listed below
- onnx-tensorrt for yolov3☆30Updated 5 years ago
- centernet_mobilenetv2 inference by ncnn☆64Updated 5 years ago
- yolov5s_ncnn_inference pipeline☆21Updated 4 years ago
- toybrick rknn multithread c demo frame work☆20Updated 4 years ago
- Mobile Detection Benchmark☆43Updated 3 years ago
- Ultra Light Weight Face Detection with Landmark☆37Updated 3 years ago
- 自然场景检测DBNet网络的tensorrt版本☆22Updated 4 years ago
- Android hand detect and pose estimation by ncnn☆95Updated 3 years ago
- tensorrt yolov7 without onnxparser☆24Updated 2 years ago
- hi3516cv500/hi3516dv300/hi3519av100☆17Updated 4 years ago
- Implement yolov5 with Tensorrt C++ api, and integrate batchedNMSPlugin. A Python wrapper is also provided.☆49Updated 3 years ago
- ☆15Updated 2 years ago
- the C++ version of solov2 with ncnn☆76Updated 3 years ago
- CenterTrack_caffe☆24Updated 4 years ago
- 基于ncnn的手机端轻量级人脸检测和关键点定位模型☆52Updated 3 years ago
- 基于AlphaPose的TensorRT加速☆61Updated 3 years ago
- Examples and tools for deep learning deployment☆57Updated 4 years ago
- MTCNN light + SORT tracking☆43Updated 5 years ago
- U版yolov5 2.0的tensorrt加速☆37Updated 4 years ago
- pytorch face_landmark☆26Updated 2 years ago
- Using TensorRT for Inference Model Deployment.☆48Updated last year
- TensorRT person tracking RFBNet300☆30Updated 5 years ago
- ☆63Updated 4 years ago
- arcface and retinaface model convert mxnet to onnx.☆60Updated 4 years ago
- yolox人脸检测,含关键点☆28Updated 3 years ago
- nanodet int8 量化,实测推理2ms一帧!☆37Updated 4 years ago
- Retinaface pytorch face-pose-detect face-key-point-detect☆36Updated 4 years ago
- ☆13Updated 5 years ago
- 将Yolov3模型转成可以进行动态Batch的TensorRT推理以及Triton Inference Serving上部署的TensorRT模型☆28Updated 4 years ago
- LFFD and SSD based Method implemented by Pytorch for Basketball Recognition Competition.☆34Updated 4 years ago