pengxl8518 / RecSysLinks
☆13Updated last year
Alternatives and similar repositories for RecSys
Users that are interested in RecSys are comparing it to the libraries listed below
Sorting:
- Deep-learning based CTR models implemented with tensorflow2.0. / 使用tensorflow2.0实现的一些基于深度学习的CTR模型☆10Updated 4 years ago
- Deep Learning Recommender System Study Notes☆13Updated 4 years ago
- 阿里DIEN与DIN Tensorflow2.0 复现☆56Updated 4 years ago
- 结合开源数据集进行电影推荐。推荐算法有:逻辑回归;UserCF ; ItemCF☆16Updated 4 years ago
- 推荐系统排序模型复现☆47Updated 4 years ago
- C++开发\机器学习\深度学习\推荐算法基础知识及面试题总结☆20Updated 4 years ago
- 推荐算法专题总结相关代码!☆19Updated 3 years ago
- RecommenderSystems: from 0 to practice. 包括推荐系统实践和深度推荐系统两部分☆17Updated 3 years ago
- ☆12Updated 4 years ago
- tensorflow2.0 实现的 DCN (Deep & Cross Network) ,使用 Criteo 子数据集加以实践。☆15Updated 4 years ago
- ☆19Updated 3 years ago
- rater, recommender systems. 推荐模型,包括:DeepFM,Wide&Deep,DIN,DeepWalk,Node2Vec等模型实现,开箱即用。☆45Updated 4 years ago
- ☆18Updated 4 years ago
- 小白记录学习CTR的历程☆17Updated 5 years ago
- Here are the models listed in CTR. Example: FM、DeepFM、xDeepFM etc.☆67Updated 11 months ago
- Codes repository for RecSys and DeepLearnig, RecSys and ReinForcement learning and Traditioinal RecSys.☆92Updated 5 years ago
- Implementation with Pytorch of DeepCrossing, DeepFM,NFM,Wide&Deep☆25Updated 4 months ago
- 机器学习、深度学习基础知识. 推荐系统及nlp相关算法实现☆68Updated 2 years ago
- 实现了一系列常见的推荐算法,如UserCF,ItemCF,SVD等,包含“切分训练集与测试集-训练模型-推荐-评估”一整套流程。☆20Updated 5 years ago
- tensorflow2.0 实现的 DeepFM,使用 Criteo 子数据集加以实践。☆29Updated 4 years ago
- wide deep ctr model by pytorch☆27Updated 5 years ago
- ctr、cvr预估☆49Updated 4 years ago
- ☆97Updated 3 years ago
- 招商银行2021FinTech精英训练营☆15Updated 4 years ago
- ☆15Updated 3 years ago
- 推荐系统之深度学习模型,框架采用tensorflow2☆58Updated 3 years ago
- GraphSAGE 的 tensorflow2.0 实现☆15Updated 4 years ago
- The framework to deal with ctr problem。The project contains FNN,PNN,DEEPFM, NFM etc☆18Updated 7 years ago
- 基于ESMM、MMoE和deepFM的多目标模型☆25Updated 3 years ago
- Share Some Recommender System Paper I read.☆69Updated 4 years ago