chenxli / CS-noteLinks
C++开发\机器学习\深度学习\推荐算法基础知识及面试题总结
☆20Updated 4 years ago
Alternatives and similar repositories for CS-note
Users that are interested in CS-note are comparing it to the libraries listed below
Sorting:
- 推荐系统实战☆33Updated 5 years ago
- 短视频内容理解与推荐竞赛☆84Updated 5 years ago
- 机器学习、深度学习基础知识. 推荐系统及nlp相关算法实现☆68Updated 2 years ago
- LR, FM, DeepFM, xDeepFM, DIN, CF等推荐算法代码demo。采用TFRecords作为输入,方便实际场景应用。☆104Updated 5 years ago
- 《推荐系统开发实战》代码及勘误☆60Updated 5 years ago
- ICME2019&字节跳动 短视频内容理解与推荐竞赛rank14方案☆55Updated 4 years ago
- 计算广告召回&模型&创意算法(A collection of research and application papers about Match, Ranking, Targeting and Creatives in Internet advertising.)☆16Updated last year
- ☆70Updated last year
- 一些CTR模型和常见特征工程的方法☆26Updated 4 years ago
- 华为_DigiX_算法精英大赛——人口年龄属性预测_ Rank14 方案☆31Updated 5 years ago
- KDD Cup 2020 Challenges for Modern E-Commerce Platform: Debiasing Full榜15 Half榜13☆67Updated 4 years ago
- 简单的实现推荐系统的召回模型和排序模型,其中召回模型使用协同过滤算法,排序模型使用gbdt+lr算法☆58Updated 6 years ago
- ☆105Updated 2 years ago
- 京东JDATA2019-用户对品类下店铺的购买预测☆18Updated 6 years ago
- ctr、cvr预估☆49Updated 4 years ago
- 推荐系统相关模型 包括召回和排序☆30Updated 5 years ago
- RecommenderSystems: from 0 to practice. 包括推荐系统实践和深度推荐系统两部分☆17Updated 3 years ago
- 推荐系统排序模型复现☆47Updated 4 years ago
- 阿里巴巴ESMM模型解读☆41Updated 4 years ago
- Experiment results using FM, FFM and DeepFM algorithms in Criteo Display Advertising Challenge(https://www.kaggle.com/c/criteo-display-ad…☆13Updated 5 years ago
- Solution to the Debiasing Track of KDD CUP 2020☆160Updated 2 years ago
- 广告点击率(CTR)预测经典模型 GBDT + LR 理解与实践(附数据 + 代码)☆91Updated 4 years ago
- Common Model about DeepCTR(WideDeep,DeepFM, DCN, XdeepFM)☆30Updated 7 months ago
- Easy-to-use pytorch-based framework for RecSys models☆40Updated 4 years ago
- 推荐系统读书笔记、思维导图等☆40Updated 2 years ago
- Self-study - Deep learning network for CTR : FM, DeepFM, PNN, NFM, DCN, Wide&Deep, etc☆17Updated 4 years ago
- 2018科大讯飞营销算法大赛(冠军方案)☆94Updated 5 years ago
- 2020腾讯广告算法大赛初赛rank6,复赛rank11队伍(wujie代码)☆12Updated 4 years ago
- papers we read about Recommendation Advertising & Search☆32Updated 5 years ago
- ☆172Updated 4 years ago