chenxli / CS-noteLinks
C++开发\机器学习\深度学习\推荐算法基础知识及面试题总结
☆21Updated 4 years ago
Alternatives and similar repositories for CS-note
Users that are interested in CS-note are comparing it to the libraries listed below
Sorting:
- 存放推荐算法相关代码、文档、资料☆256Updated 4 years ago
- 推荐系统实战☆34Updated 5 years ago
- 推荐系统竞赛TOP开源解决方案汇总。☆261Updated 3 years ago
- Recommend System☆29Updated 5 years ago
- ☆74Updated 2 years ago
- Solution to the Debiasing Track of KDD CUP 2020☆160Updated 2 years ago
- 1st Solution for 2019-CIKM-Analyticup: Efficient and Novel Item Retrieval for Large-scale Online Shopping Recommendation☆234Updated this week
- ☆106Updated 2 years ago
- KDD Cup 2020 Challenges for Modern E-Commerce Platform: Debiasing Full榜15 Half榜13☆67Updated 5 years ago
- Share Some Recommender System Paper I read.☆69Updated 4 years ago
- CTR模型代码和学习笔记总结☆394Updated 4 years ago
- 推荐系统/计算广告相关仓库,个人博客https://jesse-csj.github.io/☆291Updated 4 years ago
- LR, FM, DeepFM, xDeepFM, DIN, CF等推荐算法代码demo。采用TFRecords作为输入,方便实际场景应用。☆104Updated 5 years ago
- 推荐系统从入门到实战☆166Updated 3 years ago
- 计算广告机制策略相关材料整理(A collection of research and application papers about Strategy in Internet advertising.)☆174Updated last year
- 一些CTR模型和常见特征工程的方法☆26Updated 4 years ago
- ☆173Updated 5 years ago
- 2020腾讯广告算法大赛 Top5 solution. https://algo.qq.com/☆83Updated 4 years ago
- Here are the models listed in CTR. Example: FM、DeepFM、xDeepFM etc.☆67Updated last year
- 6th Solution for 2020-KDDCUP: Multi-Channel Retrieve and Sorting for Debiasing Recommender System☆164Updated last year
- 微信大数据挑战赛2021☆14Updated 4 years ago
- 推荐系统学习笔记☆213Updated 2 years ago
- 2018科 大讯飞营销算法大赛(冠军方案)☆95Updated 6 years ago
- 一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM, xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)☆269Updated 5 months ago
- 推荐系统排序模型复现☆47Updated 4 years ago
- Must-read papers on Recommender System. 推荐系统相关论文整理(内含40篇论文,并持续更新中)☆91Updated 6 years ago
- ☆208Updated 6 months ago
- 2019 HUAWEI DIGIX Nurbs Solutions☆132Updated 6 years ago
- Source code for paper: HiNet: Novel Multi-Scenario & Multi-Task Learning with Hierarchical Information Extraction☆89Updated this week
- ☆106Updated 4 years ago