littlepan0413 / DuEE_baseline
事件抽取基线模型
☆13Updated last year
Alternatives and similar repositories for DuEE_baseline:
Users that are interested in DuEE_baseline are comparing it to the libraries listed below
- CCKS2020面向金融领域的小样本跨类迁移事件抽取baseline☆55Updated 2 years ago
- The source code of paper "An Effective System for Multi-format Information Extraction".☆18Updated 3 years ago
- 2020语言与智能技术竞赛:事件抽取任务方案代码☆28Updated last year
- 2020语言与智能技术竞赛:事件抽取任务☆27Updated 4 years ago
- 2019语言与智能技术竞赛 信息抽取(Information Extraction) 个人baseline with BERT☆18Updated 5 years ago
- using lear to do ner extraction☆29Updated 2 years ago
- CCKS 2020: 基于本体的金融知识图谱自动化构建技术评测☆89Updated 2 years ago
- ccks2020基于本体的金融知识图谱自动化构建技术评测第五名方法总结☆49Updated 2 years ago
- Label Mask for Multi-label Classification☆56Updated 3 years ago
- 复习论文《A Frustratingly Easy Approach for Joint Entity and Relation Extraction》☆31Updated 3 years ago
- ccks2021事件抽取比赛☆30Updated 3 years ago
- 本项目是CCKS2020实体链指比赛baseline(pytorch)☆18Updated 4 years ago
- Consumer Event Cause Extraction Baseline Model☆16Updated 4 years ago
- 2020语言与智能技术竞赛:事件抽取任务 -- 联合抽取baseline☆54Updated 4 years ago
- 百度2020语言与智能技术竞赛:事件抽取赛道方案代码☆53Updated 4 years ago
- 使用多头的思想来进行命名实体识别☆33Updated 3 years ago
- CCKS 2020: 面向中文短文本的实体链指任务☆40Updated 3 years ago
- 基于“Seq2Seq+前缀树”的知识图谱问答☆71Updated 3 years ago
- TIANCHI-小布 助手对话短文本语义匹配BERT baseline☆32Updated 3 years ago
- Chinese Named Entity Recognition Using Neural Network☆29Updated 2 years ago
- ☆29Updated 5 years ago
- CCKS2020 面向中文短文本的实体链指任务。主要思路为:使用基于BiLSTM和Attention的语义模型进行Query和Doc的文本匹配,再针对匹配度进行pairwise排序,从而选出最优的知识库实体。☆47Updated 3 years ago
- 基于span分类和负采样的嵌套实体识别☆14Updated last year
- ccks金融事件主体抽取☆72Updated 4 years ago
- 通用kbqa,训练数据来源于ccks2018和2019,图谱数据爬取于百度百科☆24Updated 4 years ago
- 本项目是NLP领域一些任务的基准模型实现,包括文本分类、命名实体识别、实体关系抽取、NL2SQL、CKBQA以及BERT的各种下游任务应用。☆47Updated 3 years ago
- ☆40Updated 2 years ago
- CCKS 2020:面向金融领域的小样本跨类迁移事件抽取。该项目实现基于MRC的事件抽取方法☆39Updated 2 years ago
- 2020语言与智能技术竞赛:关系抽取任务(https://aistudio.baidu.com/aistudio/competition/detail/31?lang=zh_CN)☆24Updated 4 years ago
- NLP实验:新词挖掘+预训练模型继续Pre-training☆47Updated last year