elijahcn / TextCNN-AdversarialTraining
This project is to test the adversarial training method with TextCNN text classification model.
☆12Updated 3 years ago
Alternatives and similar repositories for TextCNN-AdversarialTraining:
Users that are interested in TextCNN-AdversarialTraining are comparing it to the libraries listed below
- 基于Pytorch实现的中文文本分类脚手架,以及常用模型对比。☆18Updated 3 years ago
- 之江-电商评论观点挖掘的比赛,基于pytorch-transformers版本,暂时只实现了BERT做aspect+opinion+属性分类+情感极性的联合标注,还未加上CRF。☆33Updated 5 years ago
- 参考NER,基于BERT的电商评论观点挖掘和情感分析☆41Updated 5 years ago
- ☆20Updated 3 years ago
- 2021搜狐校园文本匹配算法大赛☆16Updated 3 years ago
- 疫情期间网民情绪识别比赛baseline,使用BERT进行端到端的fine-tuning,datafountain平台,平台评测F1值0.716。☆35Updated 4 years ago
- Bert分类,语义相似度,获取句向量。☆65Updated 2 months ago
- Summary and comparison of Chinese classification models☆34Updated 2 years ago
- multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search☆32Updated 2 years ago
- Label Mask for Multi-label Classification☆56Updated 3 years ago
- 清博2019ccl幽默度识别第一名解决方案代码及说明☆39Updated 5 years ago
- 基于TextCNN,测试三种 对抗训练模型(FGSM,PGD,FREE)在text classification上的表现☆14Updated 3 years ago
- ccks2020的比赛-面向金融领域的篇章级事件主体与要素抽取(一)事件主体抽取☆17Updated 4 years ago
- NLP实验:新词挖掘+预训练模型继续Pre-training☆47Updated last year
- 本项目采用Keras和ALBERT实现文本多标签分类任务,其中对ALBERT进行微调。☆13Updated 4 years ago
- pytorch版的命名实体识别,LSTM和LSTM_CRF☆25Updated 5 years ago
- 天池-新冠疫情相似句对判定大赛 Rank8☆52Updated 4 years ago
- NLPCC 2020 MAMS 多属性多情感分析任务 第一名解决方案☆12Updated last year
- BDCI2019-互联网金融新实体发现-第7名(本可top3)☆18Updated 5 years ago
- 全球人工智能技术创新大赛-赛道三:小布助手对话短文本语义匹配☆37Updated 3 years ago
- 本项目采用Keras和Keras-bert实现文本多标签分类任务,对BERT进行微调。☆66Updated 3 years ago
- Pytorch进行长文本分类。这里用到的网络有:FastText、TextCNN、TextRNN、TextRCNN、Transformer☆46Updated 4 years ago
- 2021海华AI挑战赛·中文阅读理解·技术组☆20Updated 3 years ago
- 2021 搜狐校园文本匹配算法大赛方案☆16Updated 3 months ago
- 2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队☆42Updated 3 years ago
- ☆36Updated 4 years ago
- 疫情期间网民情绪识别比赛分享+top1~3解决方案☆51Updated 4 years ago
- 本项目是NLP领域一些任务的基准模型实现,包括文本分类、命名实体识别、实体关系抽取、NL2SQL、CKBQA以及BERT的各种下游任务应用。☆47Updated 4 years ago
- 2021语言与智能技术竞赛:机器阅读理解任务☆30Updated 3 years ago
- TIANCHI-小布助手对话短文本语义匹配BERT baseline☆32Updated 3 years ago