joe817 / Name-Disambiguation-Biendata-View external linksLinks
2019 Biendata竞赛平台“OAG–WhoIsWho 同名消歧竞赛 赛道一”消歧比赛,第一名解决方案
☆39Jun 23, 2021Updated 4 years ago
Alternatives and similar repositories for Name-Disambiguation-Biendata-
Users that are interested in Name-Disambiguation-Biendata- are comparing it to the libraries listed below
Sorting:
- 同名论文消歧的工程化方案(参考2019智源-aminer人名消歧竞赛第一名方案)☆25Dec 8, 2022Updated 3 years ago
- ☆13Jul 15, 2021Updated 4 years ago
- KDD'23 Web-Scale Academic Name Disambiguation: the WhoIsWho Benchmark, Leaderboard, and Toolkit☆47Mar 19, 2025Updated 10 months ago
- ☆19Aug 29, 2024Updated last year
- A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)☆83Oct 31, 2024Updated last year
- Name Disambiguation using Network Embedding☆17Dec 11, 2017Updated 8 years ago
- ☆13Oct 13, 2022Updated 3 years ago
- ☆91Sep 14, 2018Updated 7 years ago
- The source code of the paper "SHGNN: Structure-Aware Heterogeneous Graph Neural Network"☆14Dec 14, 2021Updated 4 years ago
- 事件抽取基线模型☆13Feb 16, 2023Updated 3 years ago
- ☆21Jan 14, 2019Updated 7 years ago
- RDrop 的 torch版☆16Jul 15, 2021Updated 4 years ago
- REF//biendata.com/competition/CCKS2018_3/make-submission/☆17Aug 12, 2018Updated 7 years ago
- 基于Pytorch实现的中文文本分类脚手架,以及常用模型对比。☆18Apr 23, 2021Updated 4 years ago
- 国科大UCAS课件自动下载、同步脚本☆12Feb 14, 2020Updated 6 years ago
- A simple pytorch implementation for multi-class focal loss☆18Jan 6, 2023Updated 3 years ago
- 本项目采用PyTorch和transformers模块实现英语序列标注,其中对BERT进行微调。☆19Feb 1, 2021Updated 5 years ago
- An Industry Evaluation of Embedding-based Entity Alignment @ COLING'20☆26Nov 15, 2021Updated 4 years ago
- ☆18Mar 7, 2022Updated 3 years ago
- 通用kbqa,训练数据来源于ccks2018和2019,图谱数据爬取于百度百科☆24Sep 23, 2020Updated 5 years ago
- Neo4j unmanaged extension for RDF storage and SPARQL 1.1 query features☆28May 16, 2015Updated 10 years ago
- ene to end neural coreference resolution(forked from https://github.com/kentonl/e2e-coref and make some little change)☆20Nov 7, 2018Updated 7 years ago
- Part of the 7th solution of the Kaggle Tweet Sentiment Extraction competition☆23Jun 30, 2020Updated 5 years ago
- 使用ALBERT预训练模型,用于识别文本中的时间,同时验证模型的预测耗时是否有显著提升。