skolouri / swgmm
Sliced Wasserstein Distance for Learning Gaussian Mixture Models
☆58Updated last year
Related projects ⓘ
Alternatives and complementary repositories for swgmm
- Implementation of the Sliced Wasserstein Autoencoder using PyTorch☆99Updated 6 years ago
- Gabriel Peyré, Marco Cuturi, Justin Solomon, Gromov-Wasserstein Averaging of Kernel and Distance Matrices, Proc. of ICML 2016.☆73Updated 8 years ago
- Tensorflow Implementation of "Large-scale Optimal Transport and Mapping Estimation"(ICLR2018/NIPS 2017 OTML)☆19Updated 6 years ago
- Stochastic algorithms for computing Regularized Optimal Transport☆55Updated 6 years ago
- Implementation of the Sliced Wasserstein Autoencoders☆91Updated 6 years ago
- Python implementation of smooth optimal transport.☆56Updated 3 years ago
- MMD, Hausdorff and Sinkhorn divergences scaled up to 1,000,000 samples.☆54Updated 5 years ago
- Sliced Wasserstein Generator☆37Updated 6 years ago
- PyTorch implementation of Neural Processes☆88Updated 5 years ago
- Sliced Wasserstein Generator☆23Updated 6 years ago
- A variational inference method with accurate uncertainty estimation. It uses a new semi-implicit variational family built on neural netwo…☆53Updated 3 weeks ago
- Keras implementation of Deep Wasserstein Embeddings☆46Updated 6 years ago
- Reliable Uncertainty Estimates in Deep Neural Networks using Noise Contrastive Priors☆62Updated 4 years ago
- Sinkhorn Barycenters via Frank-Wolfe algorithm☆24Updated 4 years ago
- Code for Sliced Gromov-Wasserstein☆66Updated 4 years ago
- Gaussian Process Prior Variational Autoencoder☆79Updated 5 years ago
- A Python implementation of Monge optimal transportation☆48Updated last year
- Code for NIPS 2017 spotlight paper: "Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration" by Jason Alt…☆30Updated 6 years ago
- Code for http://proceedings.mlr.press/v80/dvurechensky18a.html☆14Updated 6 years ago
- The Deep Weight Prior, ICLR 2019☆44Updated 3 years ago
- tensorflow implementation of the Wasserstein (aka optimal transport) distance☆72Updated 3 years ago
- Pytorch version of "Deep Convolutional Networks as shallow Gaussian Processes" by Adrià Garriga-Alonso, Carl Rasmussen and Laurence Aitch…☆32Updated 4 years ago
- simple implementation of "Improved Variational Inference with Inverse Autoregressive Flow" paper with pytorch☆53Updated 7 years ago
- Scalable Training of Inference Networks for Gaussian-Process Models, ICML 2019☆41Updated last year
- Learning Generative Models across Incomparable Spaces (ICML 2019)☆26Updated 4 years ago
- Code for reproducing results from our paper, Robustness of conditional GANs to noisy labels, NIPS 2018☆40Updated 5 years ago
- ☆13Updated 5 years ago
- Python notebooks for Optimal Transport between Gaussian Mixture Models☆39Updated 3 years ago
- A PyTorch Implementation of the Importance Weighted Autoencoders☆38Updated 5 years ago
- Implementation of the MMD VAE paper (InfoVAE: Information Maximizing Variational Autoencoders) in pytorch☆42Updated 3 years ago