mducoffe / Learning-Wasserstein-EmbeddingsLinks
Keras implementation of Deep Wasserstein Embeddings
☆48Updated 7 years ago
Alternatives and similar repositories for Learning-Wasserstein-Embeddings
Users that are interested in Learning-Wasserstein-Embeddings are comparing it to the libraries listed below
Sorting:
- Pytorch Implemetation for our NAACL2019 Paper "Riemannian Normalizing Flow on Variational Wasserstein Autoencoder for Text Modeling" http…☆63Updated 5 years ago
- Implementation of the Sliced Wasserstein Autoencoders☆90Updated 7 years ago
- Implementation of the Sliced Wasserstein Autoencoder using PyTorch☆102Updated 6 years ago
- ☆76Updated 7 years ago
- SparseMax activation function implementation (ICML 2016) (PyTorch)☆28Updated 7 years ago
- Stochastic algorithms for computing Regularized Optimal Transport☆58Updated 7 years ago
- implements optimal transport algorithms in pytorch☆100Updated 3 years ago
- Code for Sliced Gromov-Wasserstein☆69Updated 5 years ago
- Implementation of Information Dropout☆39Updated 8 years ago
- [NeurIPS'19] [PyTorch] Adaptive Regularization in NN☆68Updated 5 years ago
- A Pytorch implementation of the optimal transport kernel embedding☆118Updated 4 years ago
- Contains code relating to this arxiv paper https://arxiv.org/abs/1802.03761☆37Updated 7 years ago
- Exemplar VAE: Linking Generative Models, Nearest Neighbor Retrieval, and Data Augmentation☆68Updated 4 years ago
- Implementation of Methods Proposed in Preventing Gradient Attenuation in Lipschitz Constrained Convolutional Networks (NeurIPS 2019)☆35Updated 5 years ago
- ☆29Updated 3 years ago
- Sliced Wasserstein Generator☆23Updated 6 years ago
- MMD, Hausdorff and Sinkhorn divergences scaled up to 1,000,000 samples.☆56Updated 6 years ago
- [AAAI 2020 Oral] Low-variance Black-box Gradient Estimates for the Plackett-Luce Distribution☆38Updated 4 years ago
- Implementation of "Variational Dropout and the Local Reparameterization Trick" paper with Pytorch☆49Updated 7 years ago
- Gabriel Peyré, Marco Cuturi, Justin Solomon, Gromov-Wasserstein Averaging of Kernel and Distance Matrices, Proc. of ICML 2016.☆74Updated 9 years ago
- An implementation of a Variational-Autoencoder using the Gumbel-Softmax reparametrization trick in TensorFlow (tested on r1.5 CPU and GPU…☆72Updated 7 years ago
- [ICLR 2020] FSPool: Learning Set Representations with Featurewise Sort Pooling☆42Updated last year
- Code to accompany the paper Radial Bayesian Neural Networks: Beyond Discrete Support In Large-Scale Bayesian Deep Learning☆33Updated 5 years ago
- Learning Generative Models across Incomparable Spaces (ICML 2019)☆27Updated 5 years ago
- Code for the paper Implicit Weight Uncertainty in Neural Networks☆65Updated 5 years ago
- ☆24Updated 5 years ago
- Estimating Gradients for Discrete Random Variables by Sampling without Replacement☆40Updated 5 years ago
- Reliable Uncertainty Estimates in Deep Neural Networks using Noise Contrastive Priors☆62Updated 5 years ago
- Python implementation of smooth optimal transport.☆60Updated 4 years ago
- ☆24Updated 4 years ago