eifuentes / swae-pytorchLinks
Implementation of the Sliced Wasserstein Autoencoder using PyTorch
☆102Updated 7 years ago
Alternatives and similar repositories for swae-pytorch
Users that are interested in swae-pytorch are comparing it to the libraries listed below
Sorting:
- Implementation of the Sliced Wasserstein Autoencoders☆91Updated 7 years ago
- ☆91Updated 6 years ago
- Code for Sliced Gromov-Wasserstein☆69Updated 5 years ago
- Stochastic algorithms for computing Regularized Optimal Transport☆58Updated 7 years ago
- ☆66Updated 6 years ago
- Pytorch Adversarial Auto Encoder (AAE)☆87Updated 6 years ago
- Sliced Wasserstein Distance for Learning Gaussian Mixture Models☆66Updated 2 years ago
- implements optimal transport algorithms in pytorch☆102Updated 3 years ago
- PyTorch Implementation of Neural Statistician☆60Updated 3 years ago
- MINE: Mutual Information Neural Estimation in pytorch (unofficial)☆206Updated 7 years ago
- Gaussian Process Prior Variational Autoencoder☆86Updated 6 years ago
- Reliable Uncertainty Estimates in Deep Neural Networks using Noise Contrastive Priors☆62Updated 5 years ago
- Sliced Wasserstein Generator☆23Updated 7 years ago
- Exemplar VAE: Linking Generative Models, Nearest Neighbor Retrieval, and Data Augmentation☆69Updated 4 years ago
- Anonymized code for ICLR 2019 submission "Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer"☆20Updated 6 years ago
- Code for the paper "VAE with a VampPrior", J.M. Tomczak & M. Welling☆234Updated 7 years ago
- PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models☆154Updated 6 years ago
- ☆238Updated 6 years ago
- ☆149Updated 3 years ago
- ☆89Updated 4 years ago
- Reproducing the paper "Variational Sparse Coding" for the ICLR 2019 Reproducibility Challenge☆61Updated 2 years ago
- Implementation of the MMD VAE paper (InfoVAE: Information Maximizing Variational Autoencoders) in pytorch☆43Updated 4 years ago
- Scaled MMD GAN☆36Updated 6 years ago
- Code for "Flow-GAN: Combining Maximum Likelihood and Adversarial Learning in Generative Models", AAAI 2018.☆110Updated 7 years ago
- ☆92Updated 3 years ago
- Implementation of "Variational Dropout and the Local Reparameterization Trick" paper with Pytorch☆48Updated 8 years ago
- Sliced Wasserstein Generator☆39Updated 7 years ago
- Implementation of Methods Proposed in Preventing Gradient Attenuation in Lipschitz Constrained Convolutional Networks (NeurIPS 2019)☆35Updated 5 years ago
- PyTorch Implementations of Dropout Variants☆88Updated 7 years ago
- Variational auto encoder in pytorch☆57Updated 6 years ago