eifuentes / swae-pytorchLinks
Implementation of the Sliced Wasserstein Autoencoder using PyTorch
☆102Updated 7 years ago
Alternatives and similar repositories for swae-pytorch
Users that are interested in swae-pytorch are comparing it to the libraries listed below
Sorting:
- Implementation of the Sliced Wasserstein Autoencoders☆90Updated 7 years ago
- Code for Sliced Gromov-Wasserstein☆69Updated 5 years ago
- ☆91Updated 6 years ago
- Stochastic algorithms for computing Regularized Optimal Transport☆58Updated 7 years ago
- ☆66Updated 6 years ago
- Gaussian Process Prior Variational Autoencoder☆85Updated 6 years ago
- implements optimal transport algorithms in pytorch☆100Updated 3 years ago
- Pytorch Adversarial Auto Encoder (AAE)☆87Updated 6 years ago
- Sliced Wasserstein Distance for Learning Gaussian Mixture Models☆66Updated 2 years ago
- Exemplar VAE: Linking Generative Models, Nearest Neighbor Retrieval, and Data Augmentation☆69Updated 4 years ago
- PyTorch Implementation of Neural Statistician☆60Updated 3 years ago
- ☆148Updated 3 years ago
- Sliced Wasserstein Generator☆23Updated 6 years ago
- Ladder Variational Autoencoders (LVAE) in PyTorch☆92Updated 5 years ago
- Reproducing the paper "Variational Sparse Coding" for the ICLR 2019 Reproducibility Challenge☆62Updated 2 years ago
- Variational auto encoder in pytorch☆57Updated 6 years ago
- MINE: Mutual Information Neural Estimation in pytorch (unofficial)☆205Updated 7 years ago
- ☆238Updated 6 years ago
- Code for the paper "VAE with a VampPrior", J.M. Tomczak & M. Welling☆230Updated 7 years ago
- Reliable Uncertainty Estimates in Deep Neural Networks using Noise Contrastive Priors☆62Updated 5 years ago
- PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models☆154Updated 6 years ago
- Learning Generative Models across Incomparable Spaces (ICML 2019)☆27Updated 5 years ago
- Mixed-curvature Variational Autoencoders (ICLR 2020)☆65Updated 4 years ago
- Real NVP PyTorch a Minimal Working Example | Normalizing Flow☆141Updated 4 years ago
- ☆124Updated 2 years ago
- PyTorch Implementations of Dropout Variants☆87Updated 7 years ago
- A pytorch implementation of our jacobian regularizer to encourage learning representations more robust to input perturbations.☆129Updated 2 years ago
- ☆53Updated 7 years ago
- ☆91Updated 3 years ago
- Implementation of the MMD VAE paper (InfoVAE: Information Maximizing Variational Autoencoders) in pytorch☆42Updated 4 years ago