hichamjanati / spatio-temporal-alignementsLinks
Spatio-temporal alignements: Optimal transport in space and time
☆49Updated 8 months ago
Alternatives and similar repositories for spatio-temporal-alignements
Users that are interested in spatio-temporal-alignements are comparing it to the libraries listed below
Sorting:
- Code for "Variational Autoencoder with Learned Latent Structure"☆34Updated 4 years ago
- Python implementation of smooth optimal transport.☆61Updated 4 years ago
- ☆51Updated last year
- Gaussian Process Prior Variational Autoencoder☆87Updated 7 years ago
- Code for Sliced Gromov-Wasserstein☆69Updated 6 years ago
- MMD, Hausdorff and Sinkhorn divergences scaled up to 1,000,000 samples.☆57Updated 6 years ago
- Pytorch version of "Deep Convolutional Networks as shallow Gaussian Processes" by Adrià Garriga-Alonso, Carl Rasmussen and Laurence Aitch…☆32Updated 5 years ago
- Reference implementation of variational sequential Monte Carlo proposed by Naesseth et al. "Variational Sequential Monte Carlo" (2018)☆65Updated 6 years ago
- Stochastic algorithms for computing Regularized Optimal Transport☆58Updated 7 years ago
- ☆125Updated 2 years ago
- A Python implementation of Monge optimal transportation☆49Updated 2 years ago
- Learning the optimal transport map via input convex neural neworks☆42Updated 5 years ago
- [NeurIPS 2020] Neural Manifold Ordinary Differential Equations (https://arxiv.org/abs/2006.10254)☆125Updated 2 years ago
- [ICML 2020] Differentiating through the Fréchet Mean (https://arxiv.org/abs/2003.00335).☆59Updated 4 years ago
- Riemannian Convex Potential Maps☆67Updated 2 years ago
- PyTorch implementation of the Covariate-GPLVM☆25Updated 5 years ago
- Deep Gaussian Processes with Importance-Weighted Variational Inference☆39Updated 6 years ago
- ☆17Updated 7 years ago
- Approximate Inference Turns Deep Networks into Gaussian Processes (dnn2gp)☆48Updated 6 years ago
- ☆30Updated 5 years ago
- ☆37Updated 5 years ago
- Sliced Wasserstein Distance for Learning Gaussian Mixture Models☆66Updated 2 years ago
- Learning Generative Models across Incomparable Spaces (ICML 2019)☆27Updated 5 years ago
- Official implementation of the paper "Topographic VAEs learn Equivariant Capsules"☆81Updated 3 years ago
- Time-Contrastive Learning☆67Updated 7 years ago
- Reliable Uncertainty Estimates in Deep Neural Networks using Noise Contrastive Priors☆62Updated 5 years ago
- Train and visualise a latent variable model of moving objects.☆15Updated 5 years ago
- Morgan A. Schmitz., Matthieu Heitz, Nicolas Bonneel, Fred Ngole, David Coeurjolly, Marco Cuturi, Gabriel Peyré, and Jean-Luc Starck. "Was…☆20Updated 6 years ago
- Reproducing the paper "Variational Sparse Coding" for the ICLR 2019 Reproducibility Challenge☆62Updated 2 years ago
- ☆91Updated 6 years ago