hkaneko1985 / python_data_analysis_ohmshaLinks
「化学のためのPythonによるデータ解析・機械学習入門」サンプルプログラム
☆60Updated 10 months ago
Alternatives and similar repositories for python_data_analysis_ohmsha
Users that are interested in python_data_analysis_ohmsha are comparing it to the libraries listed below
Sorting:
- Japanese translation of "Deep learning for molecules and materials book"☆16Updated 3 years ago
- 分子動力学法ステップ・バイ・ステップ☆17Updated 6 years ago
- Pythonで学ぶ実験計画法入門 ベイズ最適化によるデータ解析☆83Updated 3 years ago
- Python for chemoinformatics☆232Updated 4 years ago
- 技術書のサポートページです☆10Updated 5 years ago
- kMoL is a machine learning library for drug discovery and life sciences, with federated learning capabilities.☆61Updated 10 months ago
- DCEKit (Data Chemical Engineering toolKit)☆71Updated 5 months ago
- ☆31Updated 2 years ago
- 分子動力学法の理論と実装(集中講義ノート)☆31Updated 7 months ago
- 「機械学習による分子最適化」のサポートページ☆12Updated last year
- XenonPy is a Python Software for Materials Informatics☆149Updated last year
- ☆97Updated last year
- ☆19Updated 4 months ago
- ☆27Updated 3 years ago
- Dashboard for LLM Drug Discovery Challenge.☆13Updated 2 years ago
- Graph Neural Networks☆19Updated 3 years ago
- ☆14Updated 3 years ago
- Atomistic simulation hands on tutorial on Matlantis☆64Updated 5 months ago
- ☆46Updated last month
- 『Pythonで動かしてはじめる量子化学計算』(コロナ社,2024)☆24Updated last year
- Sample code for "Predicting polymer-solvent miscibility using machine-learned Flory-Huggins interaction parameters☆17Updated last year
- 書籍『グラフニューラルネットワーク』のサポートサイトです。☆66Updated 11 months ago
- 解析力学の講義ノート☆29Updated 2 months ago
- Code for the paper Copolymer Informatics with Multi-Task Deep Neural Networks☆13Updated last year
- RadonPy is a Python library to automate physical property calculations for polymer informatics.☆237Updated last month
- 分子シミュレーションの理論や関連するトピックをまとめたノート☆26Updated last year
- ☆12Updated 2 years ago
- PHYSBO -- optimization tools for PHYsics based on Bayesian Optimization☆84Updated this week
- 数値シミュレーションの基礎☆54Updated 8 months ago
- COMBO for Python 3☆34Updated 3 years ago