XuQiao318 / Ensemble-Learning
机器学习算法之集成学习
☆13Updated 5 years ago
Alternatives and similar repositories for Ensemble-Learning:
Users that are interested in Ensemble-Learning are comparing it to the libraries listed below
- 机器学习集成模型之Stacking各类模型及工具源码☆116Updated 4 years ago
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆44Updated 5 years ago
- 利用sklearn实现机器学习算法:线性回归、逻辑回归、决策树、随机森林、SVM等☆164Updated 4 years ago
- 集成学习Stacking方法详解☆74Updated 5 years ago
- 【Numpy 手写实现】SVM 支持向量机 | KNN K近邻 | Kmeans | Logistic Regression 逻辑回归 | Maximum Entropy 最大熵 | Naive Bayes 朴素贝叶斯 | Perception 感知机 | Decision…☆206Updated 5 years ago
- 机器学习算法超参数的优化方法——基于hyperopt和bayes_opt☆14Updated 6 years ago
- 机器学习算法经典案例☆109Updated 4 years ago
- Sklearn机器学习中的主要算法原理以及实现(线性回归、逻辑回归、朴素贝叶斯、K-Means聚类、KNN、PCA主成分分析、BP神经网络)☆82Updated 5 years ago
- 包括决策树和随机森林进行离职人员预测,Xgboost和lightGBM的应用☆284Updated 5 years ago
- 使用pyhton3语言对机器学习算法中的K近邻算法、线性回归、多项式回归、逻辑回归、PCA、SVM、决策树、随机森林、集成学习、boosting 等进行了算法的实现以及实验分析☆45Updated 6 years ago
- 逻辑回归、时间序列、KNN、朴素贝叶斯、决策树、关联规则、线性回归、神经网络、SVM、模型评估以及提高模型性能☆15Updated 6 years ago
- 机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259☆55Updated 5 years ago
- 机器学习(Machine Learning, ML)python简洁实现,包括混合高斯模型,KMeans,决策树,随机森林,K近邻,线性判别分析,逻辑斯蒂回归(梯度下降法,牛顿法),多层感知机(分类+回归),Naive Bayes(离散+高斯),多分类SVM,线性回归,隐马…☆143Updated 3 years ago
- 常见机器学习算法回归、分类应用示例,调参;包括基础的线性回归算法、集成学习、支持向量机等;调参包括网格搜索、随机搜索、贝叶斯优化、优化算法如GA优化等。☆21Updated 2 years ago
- 对截止至2017年7月17日的债券违约事件进行梳理归因,并寻找宏观流动性影响因素,组成数据集。运用Lasso回归进行特征提取后,输入带L2惩罚项LR、SVM、NN、GBDT、RF等机器学习模型进行违约预测,得出GBDT预测效果最好以及特征工程对线性模型预测效果具有重要性的结…☆56Updated 6 years ago
- 2021年研究生数学建模竞赛B题,全国二等奖,空气质量预报二次建模,时间序列数据分析与回归预测。Time Series Prediction&Air Quality Prediction.☆37Updated 3 years ago
- ☆148Updated 3 years ago
- 包含灰色预测模型:灰色单变量预测模型GM(1,1)模型,灰色多变量预测模型GM(1,N)模型,GM(1,N)幂模型,灰色多变量周期幂模型GM(1,N|sin)幂模型,以及灰色关联模型☆77Updated 2 years ago
- 记录小润了解的各种机器学习算法的实现以及基础概念,包括有监督学习,无监督学习,分类,聚类,回归;神经元模型,多层感知器,BP算法;损失函数,激活函数,梯度下降法;全连接网络、卷积神经网络、递归神经网络;训练集,测试集,交叉验证,欠拟合,过拟合;数据 规范化等☆154Updated 8 years ago
- 数据预处理过程(属性选择, 异常值处理, 归一化, 标准化等)☆62Updated 4 years ago
- 基于iris数据集进行四种机器学习算法(决策树、朴素贝叶斯、随机森林、支持向量机SVM)的训练,使用交叉检验(Cross-validation)对比了各算法的预测准确率。☆21Updated 5 years ago
- 用 jupyter notebook做的一些机器学习项目☆82Updated 5 years ago
- 学习吴恩达视频,完成一个小project。使用梯度下降、正则化、神经网络进行房价的预测。使用python中的numpy、scipy、pandas以及matplotlib完成编程的实现。☆25Updated 5 years ago
- Time Series Prediction, Stateful LSTM; 时间序列预测,洗发水销量/股票走势预测,有状态循环神经网络☆58Updated 7 years ago
- 利用python对3000个数据利用机器学习算法建立模型,并预测未来客户信用风险。处理数据不均衡问题时采用了SMOTE过采样以及随机过采样技术;通过相 关性分析进行特征选择;建模过程中用到了Logistic回归、SVM、随机森林、GBDT四种模型,并通过网格搜索法确定最优参数…☆31Updated 2 years ago
- python实现的随机森林☆97Updated 2 years ago
- 周志华-机器学习☆277Updated 5 years ago
- 基于深度学习的共享单车预测与调度解决方案,使用神经网络构建单车需求量与时间段和地理画像的关联,预测不同区域单车需求量;使用蚁群算法规划最优单车调度路径。☆98Updated 6 years ago
- 机器学习预测系统汇总:包括贝叶斯网络、马尔科夫模型、线性回归、岭回归、多项式回归、决策树回归、深度神经网络预测☆74Updated 4 years ago
- 基于遗传算法的特征选择☆128Updated 5 years ago