TommyZihao / Rail-TJULinks
钢轨表面伤损细粒度图像识别和视觉测量
☆13Updated 2 years ago
Alternatives and similar repositories for Rail-TJU
Users that are interested in Rail-TJU are comparing it to the libraries listed below
Sorting:
- 基于RFBNET实现对无人机航拍图中电力杆塔,输电线的异常检测☆48Updated 2 years ago
- ☆29Updated 3 years ago
- 一系列python程序,包括哈希感知算法cvHash,图像切割cvsplit,固定目标检测cvRec(附文档ppt),视频读帧图像切割cvROI,批量图像尺寸调整size,模式匹配template☆15Updated 7 years ago
- 国内外数据竞赛资讯整理☆18Updated 3 years ago
- 计数行人+划出轨迹+变成鸟瞰图☆19Updated 4 years ago
- 基于Yolov5-Deepsort-Fastreid源码,重构了视频行人MOT和行人ReID特征提取代码、接口☆12Updated 2 years ago
- python 图像处理 以图搜图 无损压缩☆11Updated 6 years ago
- 🔨🔨🔨Tool for making model training data set☆20Updated 11 months ago
- 一个使用yolov5模型和deepsort算法的车辆检测项目,附带处理好的数据集☆43Updated 4 years ago
- Jupyter notebook tutorials for MMDetection☆26Updated 3 years ago
- Violence detection using CNN+LSTM model☆11Updated 3 years ago
- 使用django+pyecharts+PP-Human开发的动态数据大屏, 有人流数据的采集入库, 打架、摔倒等事件警报,口罩检测等实用功能。边缘端版本使用onnx推理提升效率,服务端版本支持视频流推拉☆31Updated 2 years ago
- “领航”辅助自动驾驶系统☆13Updated 6 years ago
- 基于pytorch的目标检测数据增强工具包。☆17Updated 4 years ago
- Tensorflow implementation for Dash☆32Updated 3 years ago
- 基于MindSpore AI框架实现零售商品识别 top1方案☆46Updated 3 years ago
- ☆22Updated 3 years ago
- 在yolov5源码的基础上增加了标记和处理数据集的功能,使用可参考 https://blog.csdn.net/oJiWuXuan/article/details/107558286☆26Updated 3 years ago
- 大模型API性能指标比较 - 深入分析TTFT、TPS等关键指标☆19Updated last year
- Pytorch implementation for the paper"基于轻量化重构网络的表面缺陷视觉检测 "☆15Updated 4 years ago
- ☆38Updated 2 years ago
- 基于yoloV5进行多类别+关键检测,关键点检测主要是计算车辆航向角☆16Updated 3 years ago
- Jupyter notebook tutorials for MMClassification☆25Updated 3 years ago
- ☆22Updated 2 years ago
- 补充了一些Visualglm缺少的文件,可以对Visualglm进行训练,实例中是对人脸做了面相的识别☆13Updated 2 years ago
- Target detection and multi target tracking platform based on Yolo DeepSort and Flask.☆59Updated 4 years ago
- Official YOLOv7训练自己的数据集并实现端到端的TensorRT模型加速推断☆48Updated 3 years ago
- 陆续开源医疗行业的深度学习模型及数据集☆13Updated 3 years ago
- 💡💡💡awesome compute vision app in gradio☆55Updated last year
- ☆14Updated 3 years ago