TolicWang / RNNLinks
RNN示例集合
☆42Updated 6 years ago
Alternatives and similar repositories for RNN
Users that are interested in RNN are comparing it to the libraries listed below
Sorting:
- ☆166Updated 6 years ago
- some small codes about deep learning☆51Updated 7 years ago
- ☆277Updated 3 years ago
- ☆75Updated 7 years ago
- 基于双向RNN,Attention机制的编解码神经机器翻译模型☆61Updated 7 years ago
- An example attention network with simple dataset.☆228Updated 6 years ago
- Keras 快速上手——基于 Python 的深度学习实战☆32Updated 7 years ago
- ☆43Updated 7 years ago
- ☆131Updated 4 years ago
- keras注意力机制☆19Updated 7 years ago
- 这是我在小象学院课程《深度学习之TensorFlow高级编程》的课程代码☆112Updated 4 years ago
- cnn+rnn+attention: vgg(vgg16,vgg19)+rnn(LSTM, GRU)+attention, resnet(resnet_v2_50,resnet_v2_101,resnet_v2_152)+rnnrnn(LSTM, GRU)+attentio…☆209Updated 5 years ago
- Sample code and picture of my blog or project☆137Updated 3 years ago
- bilibili:啥都会一点的研究生☆48Updated 5 years ago
- personal practice(个人练习,实现了深度学习中的一些算法,包括:四种初始化方法(zero initialize, random initialize, xavier initialize, he initialize),深度神经网络,正则化,dropout,…☆225Updated 6 years ago
- attention-based LSTM/Dense implemented by Keras☆300Updated 7 years ago
- question classification with multi-level attention mechanism 使用多层级注意力机制和keras实现问题分类☆34Updated 6 years ago
- 2019科大讯飞 阿尔茨海默综合症预测挑战赛baseline☆12Updated 6 years ago
- ☆174Updated 3 years ago
- Industry chain data test:Sentence classify Bi-GRU-att☆22Updated 7 years ago
- several basic neural networks[mlp, autoencoder, CNNs, recurrentNN, recursiveNN] implements under several NN frameworks[ tensorflow, pytor…☆66Updated 3 years ago
- seq2seq learning with TensorFlow☆58Updated 6 years ago
- ’达观杯‘文本智能处理挑战赛,文本分类任务的实现,包括一些传统的监督学习算法和深度学习算法,主要基于sklearn/xgb/lgb/pytorch包实现。☆261Updated 7 years ago
- 学习笔记代码☆103Updated 5 years ago
- all kinds of text classificaiton models and more with deep learning☆99Updated 7 years ago
- 机器学习、深度学习、NLP实战项目☆150Updated 7 years ago
- 自注意力与文本分类☆119Updated 7 years ago
- Multilabel classification based on TextCNN and Attention☆78Updated 5 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆53Updated 8 years ago
- seq2seq model written in Pytorch☆93Updated 5 years ago