bingshen / kaggle_emotion_classifyLinks
kaggle情感分析rnn+attention解法
☆12Updated 8 years ago
Alternatives and similar repositories for kaggle_emotion_classify
Users that are interested in kaggle_emotion_classify are comparing it to the libraries listed below
Sorting:
- 使用分层注意力机制 HAN + 多任务学习 解决 AI Challenger 细粒度用户评论情感分析 。https://challenger.ai/competition/fsauor2018☆59Updated 6 years ago
- 搜狐校园算法大赛baseline☆66Updated 6 years ago
- 基于双向RNN,Attention机制的编解码神经机器翻译模型☆62Updated 8 years ago
- 本项目主要为针对DPCNN(Deep Pyramid Convolutional Neural Networks for Text Categorization )文本分类(Text Classification)的论文复现以及基于知乎看山杯Inception的修改和复现,…☆143Updated 6 years ago
- 层次注意力机制用于文本分类☆10Updated 5 years ago
- Multilabel classification based on TextCNN and Attention☆78Updated 5 years ago
- CCF-BDCI 2018年汽车行业用户观点主题及情感识别挑战赛 第6名解决方案☆141Updated 7 years ago
- 细粒度用户评论情感分析☆126Updated 7 years ago
- ☆75Updated 7 years ago
- Tensorflow+bilstm+attention+multi label text classify☆121Updated 7 years ago
- ☆135Updated 7 years ago
- 使用word2vec进行中文词向量的 训练☆90Updated 7 years ago
- AI-Challenger Baseline 细粒度用户评论情感分析☆231Updated 7 years ago
- 2018年"达观杯"文本智能处理挑战赛-长文本分类-rank4☆283Updated 5 years ago
- siamese lstm network for text similarity☆95Updated 8 years ago
- 双向lstm+crf 序列标注☆65Updated 6 years ago
- ☆61Updated 6 years ago
- Neural models for Text Classification in Tensorflow, such as cnn, dpcnn, fasttext, bert ...☆194Updated 6 years ago
- python3 bert4keras for match☆38Updated 6 years ago
- 2018年蚂蚁金服金融大脑赛题分享☆152Updated 7 years ago
- SVM, FastText, TextCNN, BiGRU, CNN-BiGRU在短分本分类上的对比☆87Updated 7 years ago
- all kinds of text classificaiton models and more with deep learning☆99Updated 7 years ago
- 关于文本分类的许多方法,主要涉及到TextCNN,TextRNN, LEAM, Transformer,Attention, fasttext, HAN等☆76Updated 7 years ago
- textcnn多标签文本分类☆37Updated 7 years ago
- 汽车行业用户观点主题及情感识别☆31Updated 7 years ago
- Hierarchical BiLSTM CNN using Keras☆78Updated 7 years ago
- ☆131Updated 4 years ago
- bert for chinese text classification☆141Updated 7 years ago
- CSDN博客的关键词提取算法,融合TF,IDF,词性,位置等多特征。该项目用于参加2017 SMP用户画像测评,排名第四,在验证集中精度为59.9%,在最终集中精度为58.7%。启发式的方法,通用性强。☆30Updated 8 years ago
- AI Challenger 2018 Sentiment Analysis Baseline with fastText☆153Updated 7 years ago