xiaosongshine / bearing_detection_by_conv1d
[深度应用]·DC竞赛轴承故障检测开源Baseline(基于Keras1D卷积 val_acc:0.99780)
☆186Updated 5 years ago
Alternatives and similar repositories for bearing_detection_by_conv1d
Users that are interested in bearing_detection_by_conv1d are comparing it to the libraries listed below
Sorting:
- 轴承故障检测 训练赛第30名代码☆128Updated 6 years ago
- ☆206Updated 5 years ago
- ☆137Updated 7 years ago
- 基于深度学习的滚动轴承故障诊断方法☆190Updated 6 years ago
- ☆104Updated 5 years ago
- ☆60Updated 5 years ago
- 使用TensorFlow建立简单的轴承故障诊断模型☆102Updated 7 years ago
- 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。☆124Updated 4 years ago
- 1D CNN for CWRU rolling bearings dataset☆39Updated 6 years ago
- 1DCNN Fault Detection(1DCNN的轴承故障诊断)☆161Updated 3 years ago
- CNN for mechanical fault diagnosis☆300Updated 7 years ago
- 基于深度学习机械设备故障诊断模型☆166Updated 7 years ago
- with LSTM method to solve bearing fault diagnosis classification☆61Updated 7 years ago
- wdcnn轴承故障模型☆365Updated 6 years ago
- 轴承有3种故障:外圈故障,内圈故障,滚珠故障,外加正常的工作状态。如表1所示,结合轴承的3种直径(直径1,直径2,直径3),轴承的工作状态有10类☆32Updated 6 years ago
- ☆166Updated 3 years ago
- 故障诊断方面的论文阅读☆16Updated 5 years ago
- 基于无监督和迁移学习的旋转机械故障诊断☆32Updated 5 years ago
- CNN applied to bearing signals for analysis☆88Updated 5 years ago
- Using LSTM to predict Remaining Useful Life of CMAPSS Dataset☆88Updated 6 years ago
- ☆95Updated 2 years ago
- Code used in Thesis "Convolutional Recurrent Neural Networks for Remaining Useful Life Prediction in Mechanical Systems".☆83Updated 6 years ago
- Remaining Useful Life Prediction Using RNN/LSTM/GRU Neural Networks☆138Updated 3 years ago
- 基于注意力机制的少量样本故障诊断 pytorch☆224Updated last year
- to prediction the remain useful life of bearing based on 2012 PHM data☆283Updated 4 years ago
- start tests☆23Updated 6 years ago
- ☆264Updated 7 years ago
- 由于CSDN博客里面不能直接上代码链接,涉嫌营销推广,因此建一个github仓库用于整理这些代码链接☆154Updated 2 years ago
- One model for RUL and fault prognostic prediction on XJTU bearing dataset☆92Updated 5 years ago
- Deep learning in PHM,Deep learning in fault diagnosis,Deep learning in remaining useful life prediction☆444Updated 4 years ago