xiaosongshine / bearing_detection_by_conv1dLinks
[深度应用]·DC竞赛轴承故障检测开源Baseline(基于Keras1D卷积 val_acc:0.99780)
☆203Updated 6 years ago
Alternatives and similar repositories for bearing_detection_by_conv1d
Users that are interested in bearing_detection_by_conv1d are comparing it to the libraries listed below
Sorting:
- 轴承故障检测 训练赛第30名代码☆133Updated 6 years ago
- ☆141Updated 8 years ago
- 基于深度学习机械设备故障诊断模型☆173Updated 8 years ago
- 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。☆133Updated 4 years ago
- ☆212Updated 6 years ago
- 使用TensorFlow建立简单的轴承故障诊断模型☆104Updated 7 years ago
- 基于深度学习的滚动轴承故障诊断方法☆209Updated 6 years ago
- wdcnn轴承故障模型☆381Updated 7 years ago
- 轴承有3种故障:外圈故障,内圈故障,滚珠故障,外加正常的工作状态。如表1所示,结合轴承的3种直径(直径1,直径2,直径3),轴承的工作状态有10类☆34Updated 6 years ago
- CNN for mechanical fault diagnosis☆321Updated 7 years ago
- 1DCNN Fault Detection(1DCNN的轴承故障诊断)☆185Updated 3 years ago
- ☆62Updated 6 years ago
- 1D CNN for CWRU rolling bearings dataset☆44Updated 7 years ago
- ☆114Updated 6 years ago
- with LSTM method to solve bearing fault diagnosis classification☆62Updated 8 years ago
- Deep learning in PHM,Deep learning in fault diagnosis,Deep learning in remaining useful life prediction☆463Updated 4 years ago
- ☆175Updated 4 years ago
- 基于无监督和迁移学习的旋转机械故障诊断☆33Updated 5 years ago
- CNN applied to bearing signals for analysis☆92Updated 5 years ago
- ☆284Updated 7 years ago
- to prediction the remain useful life of bearing based on 2012 PHM data☆301Updated 4 years ago
- Using LSTM to predict Remaining Useful Life of CMAPSS Dataset☆90Updated 7 years ago
- 故障诊断方面的论文阅读☆16Updated 6 years ago
- 轴承故障诊断☆116Updated 3 years ago
- This is the corresponding repository of paper Limited Data Rolling Bearing Fault Diagnosis with Few-shot Learning☆363Updated 3 years ago
- ☆87Updated 3 years ago
- Code used in Thesis "Convolutional Recurrent Neural Networks for Remaining Useful Life Prediction in Mechanical Systems".☆85Updated 6 years ago
- Deep Residual Shrinkage Networks for Intelligent Fault Diagnosis(pytorch) 深度残差收缩网络应用于故障诊断☆236Updated 2 years ago
- This is a case of bearing fault intelligent diagnosis. The program is written in MATLAB. The main techniques used are feature detection a…☆53Updated 4 years ago
- One model for RUL and fault prognostic prediction on XJTU bearing dataset☆96Updated 6 years ago