HorieYuan / LSTMTextSummarizationLinks
基于多级LSTM的抽取式文本摘要
☆12Updated last year
Alternatives and similar repositories for LSTMTextSummarization
Users that are interested in LSTMTextSummarization are comparing it to the libraries listed below
Sorting:
- 指针生成网络的文本摘要☆18Updated 5 years ago
- 基于TensorFlow,seq2seq+attention+beamsearch的文本摘要。☆59Updated 6 years ago
- 使用三种方法实现中文抽取式自动文摘,分别是TextRank算法、MMR(最大边界相关算法)算法和TextRank+Word2vec方法;最后使用Rouge评价方法,将生成的摘要和标准摘要进行比较,输出p、r、f值。☆35Updated 5 years ago
- implementation pointer-generator-network by pytorch and python3☆87Updated 5 years ago
- 新闻文本自动摘要, 以Textrank 为基础,融入 标题特征,单句位置特征,重要实体特征,线索词特征,做句子的综合权重计算,并使用MMR算法,兼顾自动摘要的主题相关性和摘要多样性。☆26Updated 3 years ago
- 基于transformer的指针生成网络☆93Updated 4 years ago
- 使用两种方法(抽取式Textrank和概要式seq2seq)自动提取文本摘要☆219Updated 6 years ago
- 基于Transformer的生成式文本摘要☆187Updated 3 years ago
- 抽取式摘要抽取算法(1、抽取式 2、生成式)☆16Updated 6 years ago
- Aspect Based Sentiment Analysis 基于方面的细粒度情感分析☆174Updated 3 years ago
- code for ACL2020:《FLAT: Chinese NER Using Flat-Lattice Transformer》 我注释&修改&添加了部分源码,使得大家更容易复现这个代码。☆56Updated 5 years ago
- 篇章级事件抽取☆21Updated 5 years ago
- 基于Bert的信息检索问答☆18Updated 5 years ago
- 2020 科大讯飞 事件抽取挑战赛☆21Updated 5 years ago
- NLPCC 2017 task3 article text summary☆24Updated 8 years ago
- 自然语言处理中的基础任务,包含但不限于文本表示,文本分类,命名实体识别,关系抽取,文本生成,文本摘要等,基于tensorflow2或Pytorch,所有代码均经过测试,项目中也包含相关数据。☆151Updated 3 years ago
- ☆61Updated 2 years ago
- bert pytorch模型微调用于的多标签文本分类☆137Updated 6 years ago
- 在bert模型的pre_training基础上进行text_cnn文本分类☆79Updated 5 years ago
- 使用基于Transformer的预训练模型在ACE2005数据集上进行事件抽取任务☆159Updated 5 years ago
- pytorch implementation of multi-label text classification, includes kinds of models and pretrained. Especially for Chinese preprocessing.☆78Updated 6 years ago
- codes for paper A Multi-task Learning Model for Chinese-oriented Aspect Polarity Classification and Aspect Term Extraction☆201Updated 3 years ago
- smp ewect code☆79Updated 5 years ago
- Nugget Proposal Networks for Chinese Event Detection☆140Updated 7 years ago
- Named Recognition Entity based on BERT and CRF 基于BERT+CRF的中文命名实体识别☆185Updated 3 years ago
- albert + lstm + crf实体识别,pytorch实现。识别的主要实体是人名、地名、机构名和时间。albert + lstm + crf (named entity recognition)☆137Updated 3 years ago
- 本项目采用Keras和Keras-bert实现文本多标签分类任务,对BERT进行微调。☆67Updated 4 years ago
- 参考NER,基于BERT的电商评论观点挖掘和情感分析☆43Updated 6 years ago
- ☆52Updated 5 years ago
- 百度2020语言与智能技术竞赛:事件抽取赛道方案代码☆54Updated 5 years ago