DeqianBai / Your-first-machine-learning-Project---End-to-End-in-PythonLinks
这是一个完整的,端到端的机器学习项目,非常适合有一定基础后拿来练习,以提高对完整机器学习项目的认识
☆387Updated 6 years ago
Alternatives and similar repositories for Your-first-machine-learning-Project---End-to-End-in-Python
Users that are interested in Your-first-machine-learning-Project---End-to-End-in-Python are comparing it to the libraries listed below
Sorting:
- ☆274Updated 6 years ago
- 数据科学/人工智能比赛解决方案汇总☆532Updated 4 years ago
- 讲解常见的机器学习算法☆317Updated 4 years ago
- 机器学习&深度学习资料笔记&基本算法实现&资源整理(ML / CV / NLP / DM...)☆227Updated last year
- 机器学习算法 基于西瓜书以及《统计学习方法》,当然包括DL。☆293Updated 5 years ago
- 数据挖掘入门介绍☆293Updated 7 years ago
- 记录Learning from data一书中的习题解答☆78Updated 6 years ago
- 用python和sklearn两种方法实现李航《统计学习方法》中的算法☆338Updated 7 years ago
- A collection of popular Data Science Competitions☆55Updated 6 years ago
- 统计学习方法训练营课程作业及答案,视频笔记在线阅读地址:https://relph1119.github.io/statistical-learning-method-camp☆196Updated 2 years ago
- 教材对应的源码☆322Updated 6 years ago
- A feature engineering kit for each issue, to give you a deeper and deeper understanding of the work of feature engineering!☆672Updated 4 years ago
- 一些个人学习笔记☆61Updated 4 years ago
- 本人多次机器学习与大数据竞赛Top5的经验总结,满满的干货,拿好不谢☆397Updated 4 years ago
- 记录我学习数据挖掘过程的笔记和见到的奇技☆121Updated 6 years ago
- [译] fast.ai 机器学习和深度学习中文笔记☆415Updated 3 years ago
- 🤓 Important machine learning knowledge, each article deeply analyzes theoretical knowledge☆118Updated 5 years ago
- 机器学习、深度学习、NLP实战项目☆142Updated 7 years ago
- 使用sklearn做特征工程☆172Updated 6 years ago
- 《剑指Offer》题目汇总&常考题总结(Python实现)☆464Updated 5 years ago
- 用户贷款风险预测☆571Updated 7 years ago
- Just a memorandum. It is great if this can give u some help.☆168Updated 2 years ago
- cnn+rnn+attention: vgg(vgg16,vgg19)+rnn(LSTM, GRU)+attention, resnet(resnet_v2_50,resnet_v2_101,resnet_v2_152)+rnnrnn(LSTM, GRU)+attentio…☆208Updated 4 years ago
- Python-Machine-Learning-Algorithm☆392Updated 6 years ago
- 个人使用jupyter notebook整理的peter的《机器学习实战》代码,使其更有层次感,更加连贯,也加了一些自己的修改,以及注释☆302Updated 7 years ago
- 深度学习500问,以问答形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自己及有需要的读者。 全书分为15个章节,近20万字。由于水平有限,书中不妥之处恳请广大读者批评指正。 未 完待续............ 如有意合作,联系sc…☆28Updated 6 years ago
- Describe past Kaggle solutions☆371Updated 5 years ago
- 慢慢整理所学的机器学习算法,并根据自己所理解的样子叙述出来。(注重数学推导)☆666Updated 2 years ago
- XGBoost 中文文档☆571Updated last year
- 机器学习基本模型算法介绍(附加案例)☆222Updated 6 years ago