DengYangyong / word2vecLinks
用gensim和TensorFlow训练word2vec中文词向量
☆11Updated 6 years ago
Alternatives and similar repositories for word2vec
Users that are interested in word2vec are comparing it to the libraries listed below
Sorting:
- multi-label-classification-4-event-type☆137Updated 2 years ago
- bert实现中文关系抽取☆17Updated 2 years ago
- 多标签文本分类☆53Updated 6 years ago
- 记录自己用的BILSTM-CRF、ELMo、BERT等来做NER任务的代码。☆27Updated 5 years ago
- 事件抽取相关算法汇总☆125Updated 6 years ago
- 本项目采用Keras和Keras-bert实现文本多标签分类任务,对BERT进行微调。☆67Updated 4 years ago
- ☆34Updated 5 years ago
- 中文实体关系联合抽取baseline☆12Updated 6 years ago
- 实体识别和关系抽取的联合模型☆124Updated 6 years ago
- 事件知识图谱构建相关的论文, 包含事件抽取、事件关系识别等任务☆82Updated 2 years ago
- 在bert模型的pre_training基础上进行text_cnn文本分类☆78Updated 5 years ago
- 中文文本预处理,Word2Vec训练计算文本相似度。☆45Updated 6 years ago
- 中文实体关系抽取☆12Updated 2 years ago
- ccks2020 NER competitions☆119Updated 4 years ago
- 中文关系抽取☆137Updated 6 years ago
- 基于transformers的三元组抽取☆37Updated 4 years ago
- pytorch implementation of multi-label text classification, includes kinds of models and pretrained. Especially for Chinese preprocessing.☆77Updated 5 years ago
- multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search☆32Updated 3 years ago
- 本项目采用Keras和Keras-bert实现文本多分类任务,对BERT进行微调。☆48Updated 4 years ago
- 使用R-BERT模型对人物关系模型进行分类,效果有显著提升。☆24Updated 2 years ago
- ☆42Updated 2 years ago
- TextRank的简单实现☆10Updated 4 years ago
- Named Recognition Entity based on BERT and CRF 基于BERT+CRF的中文命名实体识别☆184Updated 2 years ago
- 自然语言处理中的基础任务,包含但不限于文本表示,文本分类,命名实体识别,关系抽取,文本生成,文本摘要等,基于tensorflow2或Pytorch,所有代码均经过测试,项目中也包含相关数据。☆143Updated 2 years ago
- bilstm _Attention_crf☆38Updated 6 years ago
- albert + lstm + crf实体识别,pytorch实现。识别的主要实体是人名、地名、机构名和时间。albert + lstm + crf (named entity recognition)☆137Updated 2 years ago
- 基于ALBERT-BiLSTM-CRF的中文命名实体识别☆12Updated 4 years ago
- 一个关于百度2019语言与智能技术竞赛信息抽取 (http://lic2019.ccf.org.cn/kg) 模型, 模型采用BERT+CNN。DEMO地址 https://github.com/Wangpeiyi9979/InformationExtractionDem…☆187Updated 6 years ago
- 中文命名实体识别NER。用keras实现BILSTM+CRF、IDCNN+CRF、BERT+BILSTM+CRF进行实体识别。结果当然是BERT+BILSTM+CRF最好啦。☆294Updated 5 years ago
- Code for http://lic2019.ccf.org.cn/kg 信息抽取。使用基于 BERT 的实体抽取和关系抽取的端到端的联合模型。☆288Updated 6 years ago