cdjasonj / Joint-Entity-and-Relation-Extraction
实现了一下multi-head-selection联合关系实体抽取
☆30Updated 5 years ago
Alternatives and similar repositories for Joint-Entity-and-Relation-Extraction:
Users that are interested in Joint-Entity-and-Relation-Extraction are comparing it to the libraries listed below
- 2019百度语言与智能技术竞赛信息抽取赛代5名代码☆69Updated 5 years ago
- Relation Extraction 中文关系提取☆72Updated 6 years ago
- 关系抽取个人实战总结以及开源工具包使用☆56Updated 6 years ago
- 实体链接demo☆65Updated 6 years ago
- 2020语言与智能技术竞赛:事件抽取任务 -- 联合抽取baseline☆54Updated 4 years ago
- CCKS2020面向金融领域的小样本跨类迁移事件抽取baseline☆55Updated 2 years ago
- bilstm _Attention_crf☆37Updated 6 years ago
- lic2020关系抽取比赛,使用Pytorch实现苏神的模型。☆101Updated 4 years ago
- Joint Extraction of Entity Mentions and Relations without Dependency Trees☆19Updated 6 years ago
- baseline for ccks2019-ipre☆48Updated 5 years ago
- 达观算法比赛ner任务,从重新训练bert,到finetune预测。☆75Updated 2 years ago
- 法研杯CAIL2019阅读理解赛题参赛模型☆42Updated 5 years ago
- ☆17Updated 6 years ago
- 2020语言与智能技术 竞赛:关系抽取任务☆65Updated 4 years ago
- ☆31Updated 6 years ago
- BERT + reproduce "Joint entity recognition and relation extraction as a multi-head selection problem" for Chinese and English IE☆139Updated 8 months ago
- 百度2020语言与智能技术竞赛:事件抽取赛道方案代码☆53Updated 4 years ago
- 基于ELMo, tensorflow的中文命名实体标注 Chinese Named Entity Recognition Based on ELMo☆21Updated 5 years ago
- 迭代膨胀卷积命名实体抽取☆45Updated 5 years ago
- ☆29Updated 5 years ago
- 2019语言与智能技术竞赛 信息抽取(Information Extraction) 个人baseline with BERT☆18Updated 5 years ago
- 使用BERT解决lic2019机器阅读理解☆89Updated 5 years ago
- bert实现中文关系抽取☆17Updated last year
- 依存句法实现关系三元组的自动抽取☆99Updated 3 years ago
- CCKS 2020:面向金融领域的小样本跨类迁移事件抽取。该项目实现基于MRC的事件抽取方法☆39Updated 2 years ago
- BERT-BiLSTM-CRF的Keras版实现☆40Updated 5 years ago
- 2020语言与智能技术竞赛:关系抽取任务(https://aistudio.baidu.com/aistudio/competition/detail/31?lang=zh_CN)☆24Updated 4 years ago
- Keras solution of simple Knowledge-Based QA task with Pretrained Language Model: supporting BERT/RoBERTa/ALBERT☆21Updated last year
- 基于Bert模型的关系抽取和实体识别、Entity Extraction and Relation Extract using Bert☆12Updated 5 years ago
- ☆91Updated 6 years ago