BBT0524 / diagnose_fault_by_vibrationLinks
毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。
☆133Updated 4 years ago
Alternatives and similar repositories for diagnose_fault_by_vibration
Users that are interested in diagnose_fault_by_vibration are comparing it to the libraries listed below
Sorting:
- 基于深度学习的滚动轴承故障诊断方法☆209Updated 6 years ago
- 1DCNN Fault Detection(1DCNN的轴承故障诊断)☆185Updated 3 years ago
- ☆212Updated 6 years ago
- ☆62Updated 6 years ago
- wdcnn轴承故障模型☆381Updated 7 years ago
- 西储大学轴承数据集故障诊断的仿真平台☆129Updated 2 years ago
- 基于注意力机制的少量样本故障诊断 pytorch☆257Updated 4 months ago
- 基于迁移学习DANN模型,对不同工况轴承进行故障诊断☆58Updated 4 years ago
- 轴承故障诊断☆116Updated 3 years ago
- 轴承故障检测 训练赛第30名代码☆133Updated 6 years ago
- 基于无监督和迁移学习的旋转机械故障诊断☆33Updated 5 years ago
- ☆106Updated 2 years ago
- 基于深度学习机械设备故障诊断模型☆173Updated 8 years ago
- CNN for mechanical fault diagnosis☆321Updated 7 years ago
- Siamese network for bearing fault diagnosis☆91Updated 5 years ago
- ☆87Updated 3 years ago
- This is the corresponding repository of paper Limited Data Rolling Bearing Fault Diagnosis with Few-shot Learning☆363Updated 3 years ago
- ☆113Updated 6 years ago
- 基于迁移学习的离心泵滚动轴承故障自动识别方法研究☆19Updated 5 years ago
- with LSTM method to solve bearing fault diagnosis classification☆62Updated 8 years ago
- 利用西储大学开源的轴承故障数据,开发简单的人工神经网络,以实现对轴承故障的检测及识别。☆52Updated 4 years ago
- 使用TensorFlow建立简单的轴承故障诊断模型☆104Updated 7 years ago
- 这是一个首层卷积为宽卷积的深度神经网络Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN)的实现,该模型具有优越的抗噪能力,可用于轴承的智能故障诊断。☆54Updated 2 years ago
- [深度应用]·DC竞赛轴承故障检测开源Baseline(基于Keras1D卷积 val_acc:0.99780)☆203Updated 6 years ago
- Deep Residual Shrinkage Networks for Intelligent Fault Diagnosis(pytorch) 深度残差收缩网络应用于故障诊断☆236Updated 2 years ago
- 基于可变形卷积和注意力机制的滚动轴承故障诊断☆48Updated 4 years ago
- 智能故障诊断和寿命预测期刊(Journals of Intelligent Fault Diagnosis and Remaining Useful Life)☆416Updated 4 months ago
- Bearing fault diagnosis model based on MCNN-LSTM☆386Updated 2 years ago
- ☆284Updated 7 years ago
- 采用一种包含加权水平可见图(WHVG)的图卷积网络(GCN),对采样的轴承震动时间序列数据分析,进行滚动轴承故障诊断。其中,对HVG中两节点的边,以节点距离的倒数作为权重进行加权,以削弱噪声节点对其他距离较远节点的影响。☆44Updated 2 years ago