albertszg / Deformable-multi-attention-convolutional-neural-networkLinks
基于可变形卷积和注意力 机制的滚动轴承故障诊断
☆46Updated 4 years ago
Alternatives and similar repositories for Deformable-multi-attention-convolutional-neural-network
Users that are interested in Deformable-multi-attention-convolutional-neural-network are comparing it to the libraries listed below
Sorting:
- 1D-CNN Vibration Signal Bearing Fault Diagnosis☆52Updated last year
- ☆97Updated 2 years ago
- 基于小波时频图与 Swin Transformer 的轴承故障诊断方法☆42Updated last year
- 一种轻量化故障诊断框架——LiConvFormer☆105Updated 6 months ago
- Transfer learning☆51Updated 3 years ago
- 基于Laplace小波卷积和BiGRU的少量样本故障诊断方法 (Small sample fault diagnosis based on Laplace wavelet convolution and BiGRU)☆53Updated 2 weeks ago
- 基于迁移学习DANN模型,对不同工况轴承进行故障诊断☆42Updated 4 years ago
- ☆86Updated 3 years ago
- ☆45Updated 3 years ago
- Using transformer to realize Bearing Fault Diagnosis☆64Updated 2 years ago
- The PyTorch version for Semi-supervised meta-learning networks with squeeze-and-excitation attention for few-shot fault diagnosis.☆57Updated 3 years ago
- Master Thesis: Intelligent Ball Screw Fault Diagnosis Using Deep Learning Based Domain Adaptation and Transfer Learning☆39Updated 2 years ago
- ☆25Updated 4 years ago
- Unsupervised Deep Transfer Learning for Intelligent Fault Diagnosis: An Open Source and Comparative Study (multi_domain))☆53Updated 3 years ago
- ☆84Updated 2 years ago
- ☆59Updated last year
- 轴承故障诊断☆88Updated 2 years ago
- New GAN models in dataset of CWRU☆40Updated 3 years ago
- 基于无监督和迁移学习的旋转机械故障诊断☆32Updated 5 years ago
- A Rolling Bearing Fault Diagnosis Method Using Multi-Sensor Data and Periodic Sampling (pytorch)☆39Updated 2 years ago
- ☆26Updated 4 years ago
- 基于深度学习的机械故障诊断☆35Updated last year
- A few shot learning repository for bearing fault diagnosis.☆91Updated last year
- It comes from eight universities, Case Western Reserve University(CWRU), Beijing University of Aeronautics and Astronautics(BUAA), Southe…☆21Updated 5 years ago
- Implementation of categorical generative adversarial networks for unsupervised bearing fault diagnostics☆57Updated 3 years ago
- WT-planetary-gearbox-datasets☆66Updated last year
- 采用一种包含加权水平可见图(WHVG)的图卷积网络(GCN),对采样的轴承震动时间序列数据分析,进行滚动轴承故障诊断。其中,对HVG中两节点的边,以节点距离的倒数作为权重进行加权,以削弱噪声节点对其他距离较远节点的影响。☆41Updated 2 years ago
- 基于深度学习的机械设备故障诊断方法研究☆41Updated 3 years ago
- ☆33Updated 2 years ago
- PyTorch Implementation of "Understanding and Learning Discriminant Features based on Multiattention 1DCNN for Wheelset Bearing Fault Diag…☆27Updated last year