yinjg1997 / Deep-Convolutional-Neural-Networks-with-Wide-First-layer-Kernels
这是一个首层卷积为宽卷积的深度神经网络Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN)的实现,该模型具有优越的抗噪能力,可用于轴承的智能故障诊断。
☆39Updated last year
Alternatives and similar repositories for Deep-Convolutional-Neural-Networks-with-Wide-First-layer-Kernels:
Users that are interested in Deep-Convolutional-Neural-Networks-with-Wide-First-layer-Kernels are comparing it to the libraries listed below
- zggg1p / A-Domain-Adaption-Transfer-Learning-Bearing-Fault-Diagnosis-Model-Based-on-Wide-Convolution-Deep-NeuInspired by the idea of transfer learning, a combined approach is proposed. In the method, Deep Convolutional Neural Networks with Wide …☆108Updated 7 months ago
- ☆93Updated last year
- 基于迁移学习DANN模型,对不同工况轴承进行故障诊断☆38Updated 3 years ago
- A few shot learning repository for bearing fault diagnosis.☆73Updated last year
- Transfer learning☆49Updated 3 years ago
- Bearing Fault Diagnosis By CNN、LSTM+CNN、GRU+CNN、SelfAttention+CNN☆16Updated last month
- ☆45Updated 2 years ago
- Using transformer to realize Bearing Fault Diagnosis☆59Updated last year
- 基于深度学习的滚动轴承故障诊断方法☆175Updated 5 years ago
- 基于小波时频图与 Swin Transformer 的轴承故障诊断方法☆34Updated last year
- The intelligent fault diagnosis of HNU IDG☆83Updated 2 years ago
- Deep discriminative transfer learning network for cross-machine fault diagnosis☆94Updated last month
- 基于深度学习的机械设备故障诊断方法研究☆25Updated 2 years ago
- A transfer learning fault diagnosis repository covering popular algorithms☆209Updated 5 months ago
- 基于Laplace小波卷积和BiGRU的少量样本故障诊断方法 (Small sample fault diagnosis based on Laplace wavelet convolution and BiGRU)☆50Updated last year
- 1DCNN Fault Detection(1DCNN的轴承故障诊断)☆143Updated 2 years ago
- An Adaptive Multi-Channel Attention Method for Fault Diagnosis☆17Updated last year
- ☆94Updated 2 years ago
- 机械故障诊断公开数据集☆42Updated last year
- 轴承故障诊断☆73Updated 2 years ago
- 西储大学轴承数据集故障诊断的仿真平台☆100Updated last year
- ☆51Updated last year
- 实现的是WDCNN的pytorch版本代码,对应论文的第三章 data包含了四个数据文件夹,这里只使用了0HP文件夹中的数据,里面包含了正常、内圈、外圈、滚动体共10种状态 preprocess.py的功能是对数据进行采样、编码,虽然划分出来了验证集但是并没有使用 trai…☆23Updated 2 years ago
- ☆25Updated 3 years ago
- 基于注意力机制的少量样本故障诊断 pytorch☆207Updated last year
- Generalized Multiscale Feature Extraction for Remaining Useful Life Prediction of Bearings with Generative Adversarial Networks☆41Updated 2 years ago
- The intelligent fault diagnosis methods of HNU IDG☆62Updated 2 years ago
- Implementation of the model-agnostic meta-learning framework on CWRU bearing fault dataset to address cross-domain few-shot fault diagnos…☆50Updated last week
- Remain useful life prediction of rolling bearing.☆52Updated 4 years ago