shanpoqq / DiagnosisDL2TF
使用TensorFlow建立简单的轴承故障诊断模型
☆92Updated 6 years ago
Related projects ⓘ
Alternatives and complementary repositories for DiagnosisDL2TF
- 基于深度学习的滚动轴承故障诊断方法☆167Updated 5 years ago
- ☆193Updated 5 years ago
- 基于深度学习机械设备故障诊断模型☆157Updated 7 years ago
- 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。☆119Updated 3 years ago
- with LSTM method to solve bearing fault diagnosis classification☆62Updated 7 years ago
- ☆134Updated 6 years ago
- CNN for mechanical fault diagnosis☆285Updated 6 years ago
- 轴承故障检测 训练赛第30名代码☆123Updated 5 years ago
- ☆59Updated 5 years ago
- 西储大学轴承数据集故障诊断的仿真平台☆93Updated last year
- One model for RUL and fault prognostic prediction on XJTU bearing dataset☆86Updated 5 years ago
- 1DCNN Fault Detection(1DCNN的轴承故障诊断)☆131Updated 2 years ago
- wdcnn轴承故障模型☆341Updated 6 years ago
- 轴承有3种故障:外圈故障,内圈故障,滚珠故障,外加正常的工作状态。如表1所示,结合轴承的3种直径(直径1,直径2,直径3),轴承的工作状态有10类☆31Updated 5 years ago
- [深度应用]·DC竞赛轴承故障检测开源Baseline(基于Keras1D卷积 val_acc:0.99780)☆175Updated 5 years ago
- 基于无监督和迁移学习的旋转机械故障诊断☆33Updated 4 years ago
- 利用西储大学开源的轴承故障数据,开发简单的人工神经网络,以实现对轴承故障的检测及识别。☆45Updated 3 years ago
- Using LSTM to predict Remaining Useful Life of CMAPSS Dataset☆81Updated 5 years ago
- to prediction the remain useful life of bearing based on 2012 PHM data☆260Updated 3 years ago
- Code used in Thesis "Convolutional Recurrent Neural Networks for Remaining Useful Life Prediction in Mechanical Systems".☆79Updated 5 years ago
- ☆74Updated 2 years ago
- 1D CNN for CWRU rolling bearings dataset☆37Updated 6 years ago
- ☆93Updated 5 years ago
- zggg1p / A-Domain-Adaption-Transfer-Learning-Bearing-Fault-Diagnosis-Model-Based-on-Wide-Convolution-Deep-NeuInspired by the idea of transfer learning, a combined approach is proposed. In the method, Deep Convolutional Neural Networks with Wide …☆105Updated 4 months ago
- Spark - Bearing RUL Predictions☆19Updated 7 years ago
- ☆157Updated 3 years ago
- 基于注意力机制的少量样本故障诊断 pytorch☆193Updated last year
- ☆91Updated last year
- Siamese network for bearing fault diagnosis☆83Updated 4 years ago
- 轴承故障诊断☆59Updated 2 years ago