caidongqi / CNN-based_CWRU_Bearing_Fault_Diagonis
Analysis of CWRU Bearing Data Set and Development of WeChat Mini Program Interface
☆41Updated 2 years ago
Related projects ⓘ
Alternatives and complementary repositories for CNN-based_CWRU_Bearing_Fault_Diagonis
- 轴承故障诊断☆61Updated 2 years ago
- 1D CNN for CWRU rolling bearings dataset☆37Updated 6 years ago
- The code of Understanding and Learning Discriminant Features based on Multi-Attention 1DCNN for Wheelset Bearing Fault Diagnosis.☆24Updated 5 years ago
- Transfer learning☆47Updated 3 years ago
- 基于无监督和迁移学习的旋转机械故障诊断☆33Updated 4 years ago
- ☆59Updated 5 years ago
- 采用一种包含加权水平可见图(WHVG)的图卷积网络(GCN),对采样的轴承震动时间序列数据分析,进行滚动轴承故障诊断。其中,对HVG中两节点的边,以节点距离的倒数作为权重进行加权,以削弱噪声节点对其他距离较远节点的影响。☆38Updated last year
- 轴承有3种故障:外圈故障,内圈故障,滚珠故障,外加正常的工作状态。如表1所示,结合轴承的3种直径(直径1,直径2,直径3),轴承的工作状态有10类☆31Updated 5 years ago
- 基于迁移学习DANN模型,对不同工况轴承进行故障诊断☆34Updated 3 years ago
- ☆23Updated 3 years ago
- : Faulty and healthy gear box Data sets need to be analyzed in detail. Here, we created this dataset for those who do research in wind tu…☆40Updated 6 years ago
- This is the original dataset that we use in our research work, but it may difficult to find in the original link.☆24Updated 3 years ago
- ☆22Updated 4 years ago
- 基于可变形卷积和注意力机制的滚动轴承故障诊断☆42Updated 3 years ago
- 论文“时变转速下基于改进图注意力网络的轴承半监督故障诊断”源码☆25Updated 2 years ago
- One model for RUL and fault prognostic prediction on XJTU bearing dataset☆88Updated 5 years ago
- 基于CNN、特征螺旋排列、奇异值分解、Hankel矩阵的故障诊断方法☆10Updated 5 years ago
- wdcnn model for bearing fault diagnosis☆31Updated 4 years ago
- Siamese network for bearing fault diagnosis☆84Updated 4 years ago
- Experiments performed to analyse the CNN on the CWRU data set.☆15Updated 4 years ago
- ☆74Updated 2 years ago
- 故障诊断方面的论文阅读☆16Updated 5 years ago
- Unsupervised Deep Transfer Learning for Intelligent Fault Diagnosis: An Open Source and Comparative Study (multi_domain))☆48Updated 3 years ago
- ☆12Updated last year
- 轴 承故障诊断实验 17级15组☆13Updated 4 years ago
- ☆23Updated 2 years ago
- This repository is for the Few-shot Learning for the fault diagnosis of large industrial equipment.☆79Updated 2 years ago
- ☆91Updated last year
- domain adaption with LSGAN for bearing fault diagnosis☆68Updated 6 years ago