Alfo5123 / Variational-Sparse-CodingLinks
Reproducing the paper "Variational Sparse Coding" for the ICLR 2019 Reproducibility Challenge
☆62Updated 2 years ago
Alternatives and similar repositories for Variational-Sparse-Coding
Users that are interested in Variational-Sparse-Coding are comparing it to the libraries listed below
Sorting:
- ☆123Updated 2 years ago
- ☆91Updated 6 years ago
- Pytorch implementations of generative models: VQVAE2, AIR, DRAW, InfoGAN, DCGAN, SSVAE☆92Updated 4 years ago
- Exemplar VAE: Linking Generative Models, Nearest Neighbor Retrieval, and Data Augmentation☆68Updated 4 years ago
- Implementation of the Sliced Wasserstein Autoencoder using PyTorch☆103Updated 6 years ago
- ☆54Updated last year
- Official PyTorch BIVA implementation (BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling)☆84Updated 2 years ago
- Mutual Information Neural Estimator implemented in Tensorflow☆46Updated 6 years ago
- A pytorch implementation of our jacobian regularizer to encourage learning representations more robust to input perturbations.☆128Updated last year
- Gaussian Process Prior Variational Autoencoder☆85Updated 6 years ago
- Implementation of the Sliced Wasserstein Autoencoders☆90Updated 7 years ago
- Variational auto encoder in pytorch☆57Updated 6 years ago
- ☆148Updated 3 years ago
- ☆29Updated 3 years ago
- Reliable Uncertainty Estimates in Deep Neural Networks using Noise Contrastive Priors☆62Updated 5 years ago
- Sample code for running deterministic variational inference to train Bayesian neural networks☆100Updated 6 years ago
- Code for "Variational Autoencoder with Learned Latent Structure"☆34Updated 4 years ago
- A Pytorch Implementation of the Beta-VAE☆44Updated 6 years ago
- Code to accompany the paper Radial Bayesian Neural Networks: Beyond Discrete Support In Large-Scale Bayesian Deep Learning☆33Updated 5 years ago
- Experiments for the Neural Autoregressive Flows paper☆125Updated 4 years ago
- Code for Sliced Gromov-Wasserstein☆69Updated 5 years ago
- PyTorch implementation of Bidirectional Monte Carlo, Annealed Importance Sampling, and Hamiltonian Monte Carlo.☆52Updated 4 years ago
- ☆64Updated last year
- Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding☆73Updated 3 years ago
- Codebase for Learning Invariances in Neural Networks☆95Updated 2 years ago
- PyTorch Implementation of Neural Statistician☆60Updated 3 years ago
- Hypergradient descent☆149Updated last year
- Implementation of "Variational Dropout and the Local Reparameterization Trick" paper with Pytorch☆49Updated 7 years ago
- PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models☆154Updated 5 years ago
- Pytorch version of "Deep Convolutional Networks as shallow Gaussian Processes" by Adrià Garriga-Alonso, Carl Rasmussen and Laurence Aitch…☆32Updated 5 years ago