M73ACat / ResNet-1D-DRSN-1DLinks
A python program to build ResNet-1D model and DRSN-1D model in keras environment.
☆11Updated 2 years ago
Alternatives and similar repositories for ResNet-1D-DRSN-1D
Users that are interested in ResNet-1D-DRSN-1D are comparing it to the libraries listed below
Sorting:
- ☆102Updated 2 years ago
- ☆111Updated 3 years ago
- Deep Residual Shrinkage Networks for Intelligent Fault Diagnosis(pytorch) 深度残差收缩网络应用于故障诊断☆231Updated 2 years ago
- 基于可变形卷积和注意力机制的滚动轴承故障诊断☆49Updated 4 years ago
- 基于小波时频图与 Swin Transformer 的轴承故障诊断方法☆51Updated 2 years ago
- 机械故障诊断公开数据集☆68Updated last year
- 1DCNN Fault Detection(1DCNN的轴承故障诊断)☆183Updated 3 years ago
- 基于无监督和迁移学习的旋转机械故障诊断☆33Updated 5 years ago
- Siamese network for bearing fault diagnosis☆91Updated 5 years ago
- 一种轻量化故障诊断框架——LiConvFormer☆121Updated 10 months ago
- ☆35Updated 2 years ago
- This code is about the implementation of Domain Adversarial Graph Convolutional Network for Fault Diagnosis Under Variable Working Condit…☆173Updated 4 years ago
- 基于迁移学习DANN模型,对不同工况轴承进行故障诊断☆56Updated 4 years ago
- ☆62Updated 6 years ago
- 基于深度学习的机械故障诊断☆36Updated last year
- 一种新的基于动态图注意力网络和标签传播策略的半监督故障诊断方法☆36Updated 2 years ago
- Transfer learning☆58Updated 4 years ago
- ☆212Updated 6 years ago
- An official code for paper: TFPred: Learning discriminative representations from unlabeled data for few-label rotating machinery fault di…☆65Updated last year
- ☆68Updated 4 years ago
- 基于注意力机制的少量样本故障诊断 pytorch☆251Updated 4 months ago
- A Fault Diagnosis Method of Rotor System Based on Parallel Convolutional Neural Network Architecture with Attention Mechanism☆36Updated 2 years ago
- The intelligent fault diagnosis methods of HNU IDG☆69Updated 2 years ago
- The intelligent fault diagnosis of HNU IDG☆113Updated 2 years ago
- Using transformer to realize Bearing Fault Diagnosis☆66Updated 2 years ago
- 基于深度学习的滚动轴承故障诊断方法☆206Updated 6 years ago
- GTFE-Net: A Gramian Time Frequency Enhancement CNN for bearing fault diagnosis☆37Updated 2 years ago
- 基于图神经网络的机械故障诊断☆102Updated last year
- 基于深度学习的机械设备故障诊断方法研究☆47Updated 3 years ago
- 采用一种包含加权水平可见图(WHVG)的图卷积网络(GCN),对采样的轴承震动时间序列数据分析,进行滚动轴承故障诊断。其中,对HVG中两节点的边,以节点距离的倒数作为权重进行加权,以削弱噪声节点对其他距离较远节点的影响。☆43Updated 2 years ago